University of Alberta

Category: Uncategorized (Page 4 of 5)

Effects of serotonin on the intrinsic membrane properties of layer II medial entorhinal cortex neurons

PMID: 17146777

Ma L, Shalinsky MH, Alonso A, Dickson CT

Hippocampus 2007;17(2):114-29

Abstract

Although serotonin (5-HT) is an important neuromodulator in the superficial layers of the medial entorhinal cortex (mEC), there is some disagreement concerning its influences upon the membrane properties of neurons within this region. We performed whole cell recordings of mEC Layer II projection neurons in rat brain slices in order to characterize the intrinsic influences of 5-HT. In current clamp, 5-HT evoked a biphasic response consisting of a moderately short latency and large amplitude hyperpolarization followed by a slowly developing, long lasting, and small amplitude depolarization. Correspondingly, in voltage clamp, 5-HT evoked a robust outward followed by a smaller inward shift of holding current. The outward current evoked by 5-HT showed a consistent current/voltage (I/V) relationship across cells with inward rectification, and demonstrating a reversal potential that was systematically dependent upon the extracellular concentration of K(+), suggesting that it was predominantly carried by potassium ions. However, the inward current showed a less consistent I/V relationship across different cells, suggesting multiple independent ionic mechanisms. The outward current was mediated through activation of 5-HT(1A) receptors via a G-protein dependent mechanism while inward currents were evoked in a 5-HT(1A)-independent fashion. A significant proportion of the inward current was blocked by the I(h) inhibitor ZD7288 and appeared to be due to 5-HT modulation of I(h) as 5-HT shifted the activation curve of I(h) in a depolarizing fashion. Serotonin is thus likely to influence, in a composite fashion, the information processing of Layer II neurons in the mEC and thus, the passage of neocortical information via the perforant pathway to the hippocampus.

Hippocampal slow oscillation: a novel EEG state and its coordination with ongoing neocortical activity

PMID: 16763029

Wolansky T, Clement EA, Peters SR, Palczak MA, Dickson CT

J. Neurosci. 2006 Jun;26(23):6213-29

Abstract

State-dependent EEG in the hippocampus (HPC) has traditionally been divided into two activity patterns: theta, a large-amplitude, regular oscillation with a bandwidth of 3-12 Hz, and large-amplitude irregular activity (LIA), a less regular signal with broadband characteristics. Both of these activity patterns have been linked to the memory functions subserved by the HPC. Here we describe, using extracellular field recording techniques in naturally sleeping and urethane-anesthetized rats, a novel state present during deactivated stages of sleep and anesthesia that is characterized by a prominent large-amplitude and slow frequency (< or =1 Hz) rhythm. We have called this activity the hippocampal slow oscillation (SO) because of its similarity and correspondence with the previously described neocortical SO. Almost all hippocampal units recorded exhibited differential spiking behavior during the SO as compared with other states. Although the hippocampal SO occurred in situations similar to the neocortical SO, it demonstrated some independence in its initiation, coordination, and coherence. The SO was abolished by sensory stimulation or cholinergic agonism and was enhanced by increasing anesthetic depth or muscarinic receptor antagonism. Laminar profile analyses of the SO showed a phase shift and prominent current sink-source alternations in stratum lacunosum-moleculare of CA1. This, along with correlated slow oscillatory field and multiunit activity in superficial entorhinal cortex suggests that the hippocampal SO may be coordinated with slow neocortical activity through input arriving via the temporo-ammonic pathway. This novel state may present a favorable milieu for synchronization-dependent synaptic plasticity within and between hippocampal and neocortical ensembles.

Telencephalic input to the pretectum of pigeons: an electrophysiological and pharmacological inactivation study

PMID: 14507989

Crowder NA, Dickson CT, Wylie DR

J. Neurophysiol. 2004 Jan;91(1):274-85

Abstract

The pretectal nucleus lentiformis mesencephali (LM) and the nucleus of the basal optic root (nBOR) of the avian accessory optic system (AOS) are retinal-recipient visual nuclei involved in the analysis of optic flow that results from self-motion, and in the generation of the optokinetic response. Neurons in these nuclei show direction selectivity in response to large-field motion and are tuned in the spatiotemporal domain. In addition to retinal afferentation, both the nBOR and LM receive afferents from the Wulst, which is thought to be the avian homolog of the primary visual cortex. We examined the effects of Wulst electrical stimulation on the activity of LM neurons and recorded the directional and spatiotemporal tuning of LM neurons in pigeons before, during, and after the Wulst was temporarily inactivated by lidocaine injection. In response to Wulst electrical stimulation, LM neurons showed either short-latency excitation followed by longer-latency inhibition (W+ cells), or only a longer-latency inhibition (W- cells). The average response latencies for W+ and W- cells were 13.5 and 28.3 ms, respectively. The effects of Wulst stimulation did not correlate with either the directional or spatiotemporal tuning of the LM neurons. Injection of lidocaine into the nBOR reduced the longer-latency oscillations of W+ and W- cells. When the Wulst was temporarily inactivated by lidocaine neither the directional nor spatiotemporal response properties of LM neurons were affected. The possible functions of the projection from the Wulst to the LM are discussed.

Ionic mechanisms in the generation of subthreshold oscillations and action potential clustering in entorhinal layer II stellate neurons

PMID: 15132436

Fransén E, Alonso AA, Dickson CT, Magistretti J, Hasselmo ME

Hippocampus 2004;14(3):368-84

Abstract

A multicompartmental biophysical model of entorhinal cortex layer II stellate cells was developed to analyze the ionic basis of physiological properties, such as subthreshold membrane potential oscillations, action potential clustering, and the medium afterhyperpolarization. In particular, the simulation illustrates the interaction of the persistent sodium current (I(Nap)) and the hyperpolarization activated inward current (Ih) in the generation of subthreshold membrane potential oscillations. The potential role of Ih in contributing to the medium hyperpolarization (mAHP) and rebound spiking was studied. The role of Ih and the slow calcium-activated potassium current Ikappa(AHP) in action potential clustering was also studied. Representations of Ih and I(Nap) were developed with parameters based on voltage-clamp data from whole-cell patch and single channel recordings of stellate cells (Dickson et al., J Neurophysiol 83:2562-2579, 2000; Magistretti and Alonso, J Gen Physiol 114:491-509, 1999; Magistretti et al., J Physiol 521:629-636, 1999a; J Neurosci 19:7334-7341, 1999b). These currents interacted to generate robust subthreshold membrane potentials with amplitude and frequency corresponding to data observed in the whole cell patch recordings. The model was also able to account for effects of pharmacological manipulations, including blockade of Ih with ZD7288, partial blockade with cesium, and the influence of barium on oscillations. In a model with a wider range of currents, the transition from oscillations to single spiking, to spike clustering, and finally tonic firing could be replicated. In agreement with experiment, blockade of calcium channels in the model strongly reduced clustering. In the voltage interval during which no data are available, the model predicts that the slow component of Ih does not follow the fast component down to very short time constants. The model also predicts that the fast component of Ih is responsible for the involvement in the generation of subthreshold oscillations, and the slow component dominates in the generation of spike clusters.

Slow periodic events and their transition to gamma oscillations in the entorhinal cortex of the isolated Guinea pig brain

PMID: 12843303

Dickson CT, Biella G, de Curtis M

J. Neurophysiol. 2003 Jul;90(1):39-46

Abstract

Slow (<1 Hz) periodic activity is a distinctive discharge pattern observed in different cortical and sub-cortical structures during sleep and anesthesia. By performing field and cellular recordings, we demonstrated that slow periodic events (0.02-0.4 Hz) are spontaneously generated in the entorhinal cortex of the in vitro isolated whole brain of the guinea pig. These events were characterized by gradually developing runs of low-amplitude (50-300 microV), high-frequency (25-70 Hz) oscillations superimposed on a slow potential that lasted 1-3 s. Both slow and fast components showed a phase reversal in the superficial layers. In layer II-III entorhinal neurons, the slow periodic events correlated to a slowly developing depolarizing envelope capped by subthreshold membrane potential oscillations and action potential discharge. Slow periodic field events propagated tangentially across the entorhinal cortex and could be triggered by stimulation of superficial associative fibers, suggesting that they were generated by and propagated via network interactions in the superficial layers. Slow periodic events were reversibly abolished by muscarinic excitation elicited by carbachol (50 microM) that promoted intracellular membrane potential depolarization associated with continuous fast oscillatory activity in the gamma frequency range. These results suggest that, as proposed in vivo, activity changes in the entorhinal cortex of the in vitro isolated guinea-pig brain reflect different activation states that are under cholinergic control.

Enhancement of temporal and spatial synchronization of entorhinal gamma activity by phase reset

PMID: 12201629

Dickson CT, de Curtis M

Hippocampus 2002;12(4):447-56

Abstract

The synchronization of cortical gamma oscillatory activity (25-80 Hz) is thought to coordinate neuronal assemblies in the processing and storage of information. The mechanism by which independently oscillating and distantly located cortical zones become synchronized is presumed to involve activity in corticocortical connections, although evidence supporting this conjecture has only been indirect. In the present study, we show that activation of synaptic inputs within and to the medial entorhinal cortex (mEC) of the in vitro isolated guinea pig brain preparation resets the phase of ongoing gamma activity induced by muscarinic receptor agonism with carbachol (frequency: 24 +/- 2 Hz at 32 degrees C). Phase reset was associated with a transient enhancement of the synchronization of gamma activity recorded at distant (>1 mm) mEC sites, across which low coherence (>0.75) was observed before stimulation. This increase in synchronization, as measured by cross-correlation analysis, was restricted to a maximal period of 200 ms after either local mEC or CA1 afferent stimulation. The results provide direct evidence that synaptic activation can enhance the rhythmic synchronization of spatially remote, independently oscillating neuronal assemblies in the mEC through a mechanism of synaptically evoked phase reset. Dynamic functional grouping of oscillatory discharges across long distances in the mEC may underlie coding processes involved in the integration and storage of incoming information and thus may be important for the role of this region in memory processes.

Evidence for spatial modules mediated by temporal synchronization of carbachol-induced gamma rhythm in medial entorhinal cortex

PMID: 11027250

Dickson CT, Biella G, de Curtis M

J. Neurosci. 2000 Oct;20(20):7846-54

Abstract

Fast (gamma) oscillations in the cortex underlie the rapid temporal coordination of large-scale neuronal assemblies in the processing of sensory stimuli. Cortical gamma rhythm is modulated in vivo by cholinergic innervation from the basal forebrain and can be generated in vitro after exogenous cholinergic stimulation. Using the isolated guinea pig brain, an in vitro preparation that allows for the study of an intact cerebrum, we studied the spatial features of gamma activity evoked by the cholinomimetic carbachol (CCh) in the medial entorhinal cortex (mEC). gamma activity induced by either arterial perfusion or intraparenchymal application of CCh showed a phase reversal across mEC layer II and was reduced or abolished in a spatially localized region by focal infusions of atropine, bicuculline, and CNQX. In addition, a spatially restricted zone of gamma activity could be induced by passive diffusion of CCh from a recording pipette. Finally, gamma oscillations recorded at multiple sites across the surface of the mEC using array electrodes during arterial perfusion of CCh demonstrated a decline in synchronization (coherence) as the interelectrode distance increased. This effect was independent of the signal amplitude and was specific for gamma as opposed to theta-like activity induced by CCh in the same experiments. These results suggest that CCh-induced gamma oscillations in the mEC are mediated through direct muscarinic excitation of a highly localized reciprocal inhibitory-excitatory network located in superficial layers. We propose that functional cortical modules of highly synchronous gamma oscillations may organize incoming (cortical) and outgoing (hippocampal) information in the mEC.

Oscillatory activity in entorhinal neurons and circuits. Mechanisms and function

PMID: 10911871

Dickson CT, Magistretti J, Shalinsky M, Hamam B, Alonso A

Ann. N. Y. Acad. Sci. 2000 Jun;911:127-50

Abstract

Layers II and V of the entorhinal cortex (EC) occupy a privileged anatomical position in the temporal lobe memory system that allows them to gate the main flow of information in and out of the hippocampus, respectively. In vivo studies have shown that layer II of the EC is a robust generator of theta as well as gamma activity. Theta may also be present in layer V, but the layer V network is particularly prone to genesis of short-lasting high-frequency oscillations (“ripples”). Interestingly, in vitro studies have shown that EC layers II and V, but not layer III, have the potential to act as independent pacemakers of population oscillatory activity. Moreover, it has also been shown that subgroups of principal neurons both within layers II and V, but not layer III, are endowed with autorhythmic properties. These are characterized by subthreshold oscillations where the depolarizing phase is driven by the activation of “persistent” Na+ channels. We propose that the oscillatory properties of layer II and V neurons and local circuits are responsible for setting up the proper temporal dynamics for the coordination of the multiple sensory inputs that converge onto EC and thus help to generate sensory representations and memory encoding.

Properties and role of I(h) in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons

PMID: 10805658

Dickson CT, Magistretti J, Shalinsky MH, Fransén E, Hasselmo ME, Alonso A

J. Neurophysiol. 2000 May;83(5):2562-79

Abstract

Various subsets of brain neurons express a hyperpolarization-activated inward current (I(h)) that has been shown to be instrumental in pacing oscillatory activity at both a single-cell and a network level. A characteristic feature of the stellate cells (SCs) of entorhinal cortex (EC) layer II, those neurons giving rise to the main component of the perforant path input to the hippocampal formation, is their ability to generate persistent, Na(+)-dependent rhythmic subthreshold membrane potential oscillations, which are thought to be instrumental in implementing theta rhythmicity in the entorhinal-hippocampal network. The SCs also display a robust time-dependent inward rectification in the hyperpolarizing direction that may contribute to the generation of these oscillations. We performed whole cell recordings of SCs in in vitro slices to investigate the specific biophysical and pharmacological properties of the current underlying this inward rectification and to clarify its potential role in the genesis of the subthreshold oscillations. In voltage-clamp conditions, hyperpolarizing voltage steps evoked a slow, noninactivating inward current, which also deactivated slowly on depolarization. This current was identified as I(h) because it was resistant to extracellular Ba(2+), sensitive to Cs(+), completely and selectively abolished by ZD7288, and carried by both Na(+) and K(+) ions. I(h) in the SCs had an activation threshold and reversal potential at approximately -45 and -20 mV, respectively. Its half-activation voltage was -77 mV. Importantly, bath perfusion with ZD7288, but not Ba(2+), gradually and completely abolished the subthreshold oscillations, thus directly implicating I(h) in their generation. Using experimentally derived biophysical parameters for I(h) and the low-threshold persistent Na(+) current (I(NaP)) present in the SCs, a simplified model of these neurons was constructed and their subthreshold electroresponsiveness simulated. This indicated that the interplay between I(NaP) and I(h) can sustain persistent subthreshold oscillations in SCs. I(NaP) and I(h) operate in a “push-pull” fashion where the delay in the activation/deactivation of I(h) gives rise to the oscillatory process.

Electroresponsiveness of medial entorhinal cortex layer III neurons in vitro

PMID: 9330357

Dickson CT, Mena AR, Alonso A

Neuroscience 1997 Dec;81(4):937-50

Abstract

The entorhinal cortex funnels sensory information from the entire cortical mantle into the hippocampal formation via the perforant path. A major component of this pathway originates from the stellate cells in layer II and terminates on the dentate granule cells to activate the hippocampal trisynaptic circuit. In addition, there is also a significant, albeit less characterized, component of the perforant path that originates in entorhinal layer III pyramidal cells and terminates directly in area CA1. As a step in understanding the functional role of this monosynaptic component of the perforant path, we undertook the electrophysiological characterization of entorhinal layer III neurons in an in vitro rat brain slice preparation using intracellular recording techniques with sharp micropipettes and under current-clamp conditions. Cells were also intracellularly injected with biocytin to assess their pyramidal cell morphology. Layer III pyramidal cells did not display either the rhythmic subthreshold membrane potential oscillations nor spike-cluster discharge that characterizes the spiny stellate cells from layer II. In contrast, layer III pyramidal cells displayed a robust tendency towards spontaneous activity in the form of regular tonic discharge. Analysis of the voltage-current relations also demonstrated, in these neurons, a rather linear membrane voltage behaviour in the subthreshold range with the exception of pronounced inward rectification in the depolarizing direction. Depolarizing inward rectification was unaffected by Ca(2+)-conductance block with but was abolished by voltage-gated Na(+)-conductance block with tetrodotoxin, suggesting that a persistent Na(+)-conductance provides much of the inward current sustaining tonic discharge. In addition, in the presence of tetrodotoxin, an intermediate threshold (approximately -50 mV) Ca(2+)-dependent rebound potential was also observed which could constitute another pacemaker mechanism. A high-threshold Ca(2+)-conductance was also found to contribute to the action potential as judged by the decrease in spike duration towards the peak observed during Ca(2+)-conductance block. On the other hand, Ca(2+)-conductance block increase spike duration at the base and abolished the monophasic spike afterhyperpolarization. Analysis of the input-output relations revealed firing properties similar to those of regularly spiking neocortical cells. Current-pulse driven spike trains displayed moderate adaptation and were followed by a Ca(2+)-dependent slow afterhyperpolarization. In summary, the intrinsic electroresponsiveness of entorhinal layer III pyramidal cells suggest that these neurons may perform a rather high-fidelity transfer function of incoming neocortical sensory information directly to the CA1 hippocampal subfield. The pronounced excitability of layer III cells, due to both Na+ and Ca2+ conductances, may also be related to their tendency towards degeneration in epilepsy.

« Older posts Newer posts »

© 2025 Brain Rhythms Lab

Theme by Anders NorenUp ↑