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ABSTRACT
Evidence from neurophysiological and genetic studies demonstrates that activity sparsity—the proportion of neurons that are 
active at a given time in a population—systematically varies across the canonical trisynaptic circuit of the hippocampus. Recent 
work has also shown that sparsity varies across the hippocampal dorsoventral (long) axis, wherein activity is sparser in ven-
tral than dorsal regions. While the hippocampus has a critical role in long-term memory (LTM), whether sparsity across the 
trisynaptic circuit and hippocampal long axis is task-dependent or invariant remains unknown. Importantly, representational 
sparsity has significant implications for neural computation and theoretical models of learning and memory within and beyond 
the hippocampus. Here we used functional molecular imaging to quantify sparsity in the rat hippocampus during performance 
of the Morris water task (MWT) and contextual fear discrimination (CFD) – two popular and distinct assays of LTM. We found 
that activity sparsity is highly reliable across memory tasks, wherein activity increases sequentially across the trisynaptic circuit 
(DG < CA3 < CA1) and decreases across the long axis (ventral<dorsal). These results have important implications for models 
of hippocampal function and suggest that activity sparsity is a preserved property in the hippocampal system across cognitive 
settings.

Diverse evidence from genetic, anatomical, and physiological 
studies has revealed that activity sparsity, the proportion of ac-
tive neurons in a population, varies significantly and systemat-
ically throughout the hippocampus (Chawla et al. 2005, 2018; 
Jung and McNaughton  1993; Thome et  al.  2017; Witharana 
et  al.  2016). Namely, the classical trisynaptic circuit (dentate 
gyrus (DG) ➔ CA3 ➔ CA1) is known to have the sparsest activ-
ity in the DG, and increasing levels of activity in CA3 and CA1, 
respectively (Chawla et  al.  2005; Thome et  al.  2017). Recent 
findings have also shown that sparsity varies across the dor-
soventral (long) axis of the hippocampus (Chawla et al. 2018; 

Lee et al. 2019, 2022). These findings have important implica-
tions for theoretical models of neural computation in the hip-
pocampus, wherein sparsity is thought to have a central role 
in memory capacity and fidelity (Cayco-Gajic and Silver 2019; 
Marr 1971). Despite the known importance of the hippocam-
pus for long-term memory (LTM) (Lee et al. 2016; Teyler and 
DiScenna 1985) and the role of sparsity in neural computation 
(Hunter, Spracklen, and Ahmad 2022; Thome et al. 2017), no 
studies to our knowledge have measured sparsity across the tri-
synaptic circuit and long axis of the hippocampus during per-
formance of a memory task.
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To address this gap in knowledge, we used functional molec-
ular imaging to quantify sparsity across the trisynaptic circuit 
and long axis of the rat hippocampus during performance of 
two popular memory tasks. Namely, we trained rats to navigate 
to a hidden goal location in the Morris water task (MWT) or to 
avoid a fear-associated context in a contextual fear discrimina-
tion (CFD) paradigm (Figure  1; Section  1.2) (Lee et  al.  2022). 
Following performance of each task, we measured activity 
sparsity as the proportion of cells expressing Arc—a molecular 
marker of neural activity associated with learning and mem-
ory (Chawla et al. 2005; Guzowski et al. 1999; Lee et al. 2022). 
Namely, we sampled the entire extent of the DG, CA3 and CA1 
according to design-based, systematic random sampling proce-
dures (see Section 1.3–1.4), wherein dorsal subregions were con-
sidered anterior to −3.8 mm from bregma and ventral subregions 
were considered posterior to −5.2 mm from bregma. In doing so, 
we aimed to address if the pattern of activity sparsity in the hip-
pocampus is task-dependent or invariant.

To evaluate spatial learning in the MWT, we measured average 
latency to the goal location and the percentage of dwell time in 

the target versus non-target pool quadrants (Figure 1A,B). This 
revealed a significant decrease in latency to the hidden platform 
across training days, and differences in dwell time between tar-
get and non-target quadrants—demonstrating robust spatial 
learning and memory performance in the MWT (Figure 1B). To 
examine context fear learning in the CFD paradigm, we quan-
tified dwell time in each context during a pre-exposure and 
preference test period before and after foot-shock conditioning, 
respectively (Figure 1C,D). If rats learn to associate fear with the 
shock-paired context, we should observe no differences in dwell 
time during pre-exposure, but significant differences during the 
preference test. Indeed, we found a significant change in dwell 
time between pre-exposure and preference testing, wherein rats 
learned to avoid the shock-associated context following foot 
shock conditioning (Figure  1D). Given that rats expressed ro-
bust spatial- and fear-based learning and memory in the MWT 
and CFD, we then sought to characterize the pattern activity 
sparsity in the hippocampus during performance of each task.

In both the MWT and CFD, we observed strong differences 
in activity sparsity across hippocampal subregions and the 

FIGURE 1    |    Expression of spatial and context fear memory in two tasks. (A) The schematic illustrates training in the MWT, wherein animals 
were trained over 4 days to locate a hidden platform from random start locations in a pool. (B) The boxplots show the average latency across of the 
entire behavioral cohort to reach the hidden platform on each day (left), and the percentage of dwell time in target versus non-target quadrants 
(right). We observed a significant effect of day on average latency to reach the hidden platform (linear regression: R = −0.6886, p < 0.0001), and a 
significant effect of day (ANOVA: F(Day) = 4.0457, P(day) = 0.0096), quadrant (ANOVA: P(quadrant) < 0.0001, F(day X quadrant) = 16.1827), and day 
X quadrant interaction (ANOVA: F(day X quadrant) = 16.1827, P(day X quadrant) < 0.0001) in percentage of target versus non-target quadrant dwell 
time. Post hoc related samples t-tests on each day of quadrant dwell time showed significant differences on Day 1 (t(1,11) = 9.4850, p < 0.0001), Day 
2 (t(1,11) = 9.7234, p < 0.0001), Day 3 (t(1,11) = 6.2742, p < 0.0001), and Day 4 (t(1,11) = 9.3653, p < 0.0001). (C) The graphic illustrates training in and 
testing in the CFD task, wherein animals were first pre-exposed to two contexts, then conditioned with three foot-shocks on a single day to avoid 
one of two contexts upon subsequent context preference testing. (D) The boxplots show dwell time (left) and percentage of total dwell time (right) 
in each context during pre-exposure and preference test behavioral sessions. A two-way ANOVA revealed a significant effect of day (F = 4.5850, 
p = 0.0349), context (F = 10.1882, p = 0.0019), and day X context interaction (F = 13.7978, p = 0.0003) on dwell time, and a significant effect of context 
(F = 21.7019, p < 0.0001) and day X context interaction (F = 26.2057, p < 0.0001) for percent dwell time, but no effect of day (F < 0.0000, p = 1.0000). 
Post hoc related samples t-tests showed a significant difference in dwell time during the preference test (t = −4.3036, p = 0.0003) but not pre-exposure 
(t = 0.2803, p = 0.7817), and a significant difference in percent dwell time during the preference test (t = −4.5130, p = 0.0002) but not during pre-
exposure (t = 0.2533, p = 0.8023).

 10981063, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hipo.23651 by J. Q

uinn L
ee , W

iley O
nline L

ibrary on [03/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3 of 7

dorsoventral axis (Figure  2A,B). Namely, we found sparser 
activity in ventral than dorsal subregions, and that the pro-
portion of active cells increased across the trisynaptic circuit 
(DG < CA3 < CA1; Figure 2B). Critically, we found no effect of 
task on sparsity or interactions with hippocampal subregion 
or axis. To measure the similarity of sparsity across all hippo-
campal subregions and the dorsoventral axis in the two tasks, 
we computed a representational dissimilarity matrix (RDM) 
from the absolute difference in sparsity of all pairwise com-
parisons in the MWT and CFD (Figure  2C). We then calcu-
lated the rank-order correlation (Kendall's Tau) of RDMs from 
the MWT and CFD, which showed that the pattern of spar-
sity is highly conserved across behavioral tasks (Figure 2D). 
Finally, to relate our measurement of sparsity to memory 
storage capacity in a biologically plausible Hebbian synapse, 
we estimated the Hebb-Marr storage capacity (Marr  1971; 
Thome et al. 2017) (Mmax; see Section 1) directly from mea-
sured levels of sparsity across tasks (Figure 2E). As expected 
(Marr  1971; Thome et  al.  2017), this analysis revealed that 
storage capacity is greater for sparser populations, wherein 
ventral DG has the greatest capacity to store distinct patterns 
of activity, and dorsal CA1 has the lowest capacity for inde-
pendent pattern storage.

In the present study, we asked if the organization of sparsity in 
the hippocampal system depends on performance of a specific 
memory task. Namely, we examined how sparsity varies across 
the trisynaptic circuit and hippocampal long axis when animals 
navigate to a hidden goal location or avoid a shock-associated 
context. We found that activity sparsity in the hippocampus is 
highly organized and task-invariant, wherein activity increases 
across the trisynaptic circuit, and decreases ventrally. To our 
knowledge, this is the first study to measure sparsity across the 
entire dorsoventral axis of the trisynaptic circuit during perfor-
mance of a memory task. Future work should determine the 
mechanisms that organize sparsity in this canonical circuit, and 
its consequences for behavior in both biological and artificial 
systems.

It is perhaps surprising that we observed a highly similar pat-
tern of sparsity across hippocampal subregions in animals 
performing distinct memory tasks, given a growing number of 
studies demonstrating functional differences in these regions for 
cognition (Bannerman et  al.  2004; Fanselow and Dong  2010). 
However, several studies have shown that dorsal and ventral 
regions of the hippocampus have an important role in both spa-
tial and fear memory (Ferbinteanu, Ray, and McDonald 2003; 
McDonald et al. 2018; Ruediger et al. 2012; Sutherland, O'Brien, 
and Lehmann 2008). Future work might examine sparsity in a 
greater diversity of tasks, and systematically determine if any 
variables, such as contextual, temporal, or emotional task fea-
tures shape sparsity within and beyond the hippocampus.

While we found task-invariant patterns of sparsity across the 
long axis of the trisynaptic circuit, such regions also have well-
described differences in anatomical connectivity to diverse 
cortical and subcortical structures (Fanselow and Dong  2010; 
Moser and Moser 1998). The variation in sparsity we have ob-
served across the dorsoventral hippocampal axis likely has 
important consequences for neural coding in down-stream 
regions. Perhaps a highly sparse representation, such as that 

observed in ventral hippocampal subregions, could be rapidly 
decoded in downstream target areas; for example, to distinguish 
between threatening and non-threatening contexts. Due to its 
highly sparse activity, one could expect that the ventral hippo-
campal representation would be less likely to suffer from cat-
astrophic interference and forgetting (Marr  1971; Mcclelland, 
Mcnaughton, and Reilly 1995). Indeed, it was recently observed 
that the ventral hippocampus is necessary for discrimination 
between highly similar contexts (McDonald et al. 2018) and that 
contexts can be more rapidly decoded from ventral than dorsal 
hippocampal population activity (Rozeske et al. 2023).

In contrast to our findings that sparsity is task-invariant, prior 
work has shown that the richness of sensory conditions impacts 
the sparsity of hippocampal population activity. It has been 
well-described that animals in a cue-poor, home-cage environ-
ment have sparser hippocampal activity compared to those nav-
igating freely or performing a memory task (Chawla et al. 2005; 
Guzowski et  al.  1999; Lee et  al.  2019, 2018, 2022; Witharana 
et al. 2016). In addition, recent work also reported that naviga-
tion in virtual environments results in sparser representation 
than real-world navigation, likely due to attenuated sensory 
conditions in virtual reality (Thome et al. 2017). We speculate 
that sparsity is in part determined by the richness of sensory sig-
nals, but anatomical constraints set an upper-bound on sparsity. 
Future work should address how diverse sensory conditions de-
termine activity sparsity across distributed brain areas and its 
neurobiological constraints.

To disentangle the neurobiological factors controlling activity 
sparsity across distributed areas, future work should directly ma-
nipulate factors hypothesized to control sparsity, such as cellular 
excitability and afferent connectivity. Recently developed opto- 
and chemo-genetic tools now allow for the direct manipulation 
of cellular excitability and targeting of specific projections onto 
target populations (Rost et al. 2022; Sternson and Roth 2014). In 
combination with tasks to probe canonical computations such 
as pattern separation (Cayco-Gajic and Silver  2019), pattern 
completion, and task transfer, it will be important directly to ex-
amine how sparsity causally contributes to the ability of animals 
to perform tasks that probe such cognitive functions. It will also 
be valuable for subsequent studies to evaluate sparsity across 
hippocampal subregions with alternate approaches, including 
molecular functional imaging or neurophysiological techniques, 
as the expression of Arc is largely associated with neuronal plas-
ticity and does not afford direct measurement of neuronal firing 
rates per se (Guzowski et al. 1999).

Importantly, behavioral factors, such as environmental enrich-
ment, could also impact sparsity of neural coding in distributed 
systems (Saxena and McNaughton  2024). We anticipate that 
sparsity is titrated to contexts in which animals commonly navi-
gate, learn and remember—daily exposure to a cue-rich rearing 
environment could result in sparser representation during cog-
nitive task performance than a cue-poor environment (Bilkey 
et  al.  2017), possibly through recruitment of inhibition along 
with plasticity mechanisms. Advancing our understanding of 
the biological constraints for activity sparsity could also inform 
brain-inspired models of sparse activation functions that would 
have important implications for developments in machine learn-
ing and artificial neural networks.
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Indeed, sparsity is an active, growing area of study in machine 
learning and artificial intelligence in supervised, self-supervised 
and reinforcement learning domains (Liu et  al.  2019). For ex-
ample, recent studies in reinforcement learning and supervised 
learning in artificial neural networks have revealed that spe-
cific, sparse activation functions can aid in continual learning 
(Wang et al. 2024). Interestingly, activation functions that pro-
duce a one-to-many connectivity result in more robust repre-
sentation learning and knowledge transfer across tasks (Wang 
et al. 2024). In addition, work in the supervised setting has also 
shown that gradients of sparsity emerge naturally with specific 
architectures and learning rules (Li et al. 2023). It will be valu-
able for future work to explore biologically plausible learning 
mechanisms that produce organized patterns of sparsity that are 
task-invariant, such as the patterns we have observed across the 
trisynaptic circuit and dorsoventral axis of the hippocampus, 

and their consequences for intelligent behavior in artificial 
systems.

1   |   Detailed Methods

The animals and behavioral data in the present study were de-
scribed previously Lee et  al.  (2022), along with all behavioral 
procedures, measurements, and tissue processing methods.

1.1   |   Animals

The University of Lethbridge Animal Welfare Committee ap-
proved all procedures used in the present experiments, which 
also meet the Canadian Council of Animal Care guidelines. A 

FIGURE 2    |    Activity sparsity is task-invariant across the trisynaptic circuit and long axis. (A) Representative z-stack image projections of Arc (red) 
and DAPI (blue) labelling from DG (left), CA3 (middle), and CA1 (right) in dorsal (upper) and ventral (lower) hippocampus following performance 
of the MWT and CFD. The inset for dorsal regions shows a 2x magnification of the selected box. (B) A three-way ANOVA revealed a significant 
effect of subregion (F = 172.9828, p < 0.0001), dorsoventral axis (F = 95.4128, p < 0.0001), and subregion X axis interaction (F = 25.1513, p < 0.0001), 
but no effect of task (F = 0.0111, p = 0.9161), task X subregion (F = 0.6108, p = 0.5444), task X axis (F = 0.1825, p = 0.6699), or task X subregion X 
axis interaction (F = 0.0099, p = 0.9901). Since we did not find any significant effects of task, we then combined data from both tasks to perform 
post hoc comparisons across subregions and the dorsoventral axis. This revealed significant differences in sparsity across the trisynaptic circuit, 
wherein DG activity is more sparse than CA3 (t = −5.7695, p < 0.0001) and CA1 (t = −12.9823, p < 0.0001), and CA3 activity is more sparse than CA1 
(t = −10.8354, p < 0.0001). Comparing the dorsoventral axis of each subregion, we found significant differences in activity sparsity between dorsal 
and ventral in CA3 (t = 6.6052, p < 0.0001) and CA1 (t = 9.2705, p < 0.0001), but not DG (t = 1.2129, p = 0.2380). (C) Representational dissimilarity 
matrices (RDMs) were calculated from the absolute difference in average activity sparsity of each subregion in the dorsal and ventral hippocampus, 
wherein the absolute difference between all pairs of regions activity sparsity is shown. Dark colors indicate a similar level of sparsity, and brighter 
colors indicate greater differences across comparisons. (D) To measure the similarity of sparsity across regions in both tasks (MWT and CFD), we 
computed the rank-order correlation (Kendall's Tau) the RDMs shown in (C), as well as the average correlation of repeated shuffles of the same RDMs 
(chance level). The graph illustrates that sparsity is highly correlated across tasks (Tau = 0.8095; p < 0.0001) and greater than chance (shuffle average: 
Tau = 0.0309, p = 0.4776). (E) To estimate memory capacity from activity sparsity, we computed the Hebb-Marr Capacity (Mmax; see Section 1.5) 
from sparsity estimates in each subregion and across the dorsoventral hippocampal axis. The results illustrate sparsity is inversely related to memory 
capacity, wherein sparse representations can store a greater number of orthogonalized activity patterns.
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total of 24 Long Evans rats weighing between 300 and 350 g 
were used in the present experiments, including 12 females and 
12 males (Charles River, Raleigh, NC). Previous work has shown 
such group sizes provide adequate statistical power for within-
animal and across-group comparisons for behavioral and cellu-
lar levels of analysis. Following their arrival at the University of 
Lethbridge, animals were allowed at least 1 week to acclimatize 
to colony room conditions and were handled 5 min each day by 
the experimenter for 5 days before the start of the experiment.

1.2   |   Experimental Design

To match behavioral experience across animals, male and fe-
male rats were equally divided into cohorts and trained in the 
MWT and CFD task in counterbalanced order before final test-
ing and perfusion (Figure 1). Our rationale for training animals 
both tasks was two-fold: (1) to ensure similar cumulative experi-
ence prior to final testing and perfusion that might otherwise af-
fect Arc expression; (2) to ensure similar performance of groups 
in MWT and CFD performance. Each animal experienced the 
MWT and CFD task for 4 days each, with 1 day of rest between 
paradigms. During training in the MWT, rats were transported 
from the animal colony to the behavioral testing room in covered 
cages on a cart. Surrounding the swimming pool were several 
posters on the walls, a table, and computer rack that served as 
allocentric cues to help animals navigate. During each session, 
animals were monitored, and relevant behavioral variables (la-
tency and quadrant dwelling) were calculated using EthoVision 
XT software (Noldus) from an overhead behavioral camera. The 
MWT apparatus consisted of a 2-m diameter pool filled with 
room temperature water (~25°C) that was made opaque using 
white non-toxic tempura paint. On days 1–3, rats were given 8 
trials (maximum 60 s) starting randomly from one of the four 
cardinal positions at the edge of the pool to locate a hidden plat-
form approximately 5 cm beneath the water surface located in 
the center of the Northwest quadrant. If the animal did not lo-
cate the hidden platform within 60 s they were placed onto the 
platform by the experimenter. Animals were then allowed 10 s to 
remain on the platform before placement back into their holding 
cage by the experimenter for an approximate 5-min intertrial in-
terval. Following completion of the 8 swim trials each day, rats 
were returned to their colony room for approximately 24 h prior 
to subsequent behavioral training or testing. During the final 
testing day in the MWT, animals were individually transported 
in covered cages and given 4 swim trials with a 2-min intertrial 
interval for a total 10-min testing period. Half of the animals 
from female and male groups were euthanized and perfused fol-
lowing MWT testing.

In the CFD task, rats were individually transported in a cov-
ered holding cage by the experimenter to a room with several 
posters on the walls, a storage shelf, and the CFD apparatus, 
which consisted of two conditioning chambers (contexts) and 
connecting alleyway. One context was a black triangle that was 
61 cm long, 61 cm wide, and 30 cm high with stainless steel rod 
flooring, and was scented with banana (Isoamyl Acetate, Sigma) 
located in a perforated pill bottle at the top right corner of the 
chamber. The other context was a white square that was 41 cm 
long, 41 cm wide, and 30 cm high with stainless steel rod floor-
ing and was scented with Eucalyptus (Vic's VapoRub) located in 

a perforated pill bottle inserted through the top left corner of the 
chamber. During each session, animal behavior was recorded 
from a tripod-mounted camera from underneath the apparatus 
through a transparent table. During pre-exposure on day 1 of the 
CFD task, animals were introduced to the apparatus through 
the connecting alleyway and allowed to freely explore both 
contexts for 10 min. On subsequent days 2 and 3, animals were 
conditioned in shock-paired and no-shock contexts in counter-
balanced order. During no-shock conditioning, animals were 
placed in their no-shock context for 5 min and allowed to explore 
freely. For shock-paired conditioning, animals were transported 
to a distinct and separate room containing the same apparatus 
and placed into their shock-paired context. Shock conditioning 
was performed in a distinct room with the same apparatus to 
promote local-context based fear, rather than room-based, spa-
tial fear learning, based on previous studies that have demon-
strated room transfer drives remapping in hippocampal place 
cells. During shock conditioning, the stainless-steel rod floor-
ing was connected to a Lafayette Instrument Stimtek SGCG1 
through a custom shock harness, and 2-s, 1.0 mA scrambled foot 
shocks were delivered at the 2nd, 3rd, and 4th minute. After an 
additional 58 s, animals were removed from the shock-paired 
context and returned to their home cage. On day 4 of the CFD 
task, animals were returned to the original training room, and 
introduced to the apparatus through the connecting alleyway 
and allowed 10 min to explore both contexts. Half of female and 
male groups were sacrificed and perfused following final pref-
erence CFD testing (Figure 1E). Dwell time in each context was 
calculated by a trained observer blind to conditions of sex and 
testing order from video data of the pre-exposure and preference 
testing epochs and was defined as the presence of both forepaws 
in a context. Following final testing in either the MWT or CFD, 
animals were returned to their holding cage for 1 min, and then 
given an overdose intraperitoneal injection of sodium pentobar-
bital. They were then perfused 5–10 min after the completion of 
behavioral testing in either task, and then decapitated and had 
their brains extracted for subsequent tissue processing. This 
timeline was chosen based on previous studies demonstrating 
that behavior-driven Arc expression is maximal 5–10 min after a 
learning or remembering episode.

1.3   |   Tissue Processing

The methods used for Arc visualization with FISH are identi-
cal to those in previous studies from our group on Arc expres-
sion in the MWT. Following fixation and sectioning at 50 μm 
thickness in a 12-section series using a freezing-sliding micro-
tome, samples were stored at −80 C until fluorescent in  situ 
hybridization (FISH) tissue processing. Arc riboprobes were 
designed to detect intronic mRNA sequences, and thus nuclear 
rather than cytoplasmic expression. Primers flanking Arc in-
tron 1, exon 2, and intron 2 were designed using online software 
(National Center for Biotechnology Information Primer-Blast; 
credit to A. M. Demchuk, University of Lethbridge). The 
exact sequences of the primers and base pair designations fol-
low those of the GenBank accession number NC_005106: 
5’-CTTAGAGTTGGGGGAGGGCAGCAG-3′ (forward primer, 
base pairs 2022–2045) and 5’-ATTAACCCTCACTAAAGGGCC
CTGGGGCCTGTCAGATAGCC-3′ (reverse primer tagged with 
T3 polymerase binding site on 5′ end, base pairs 2445–2466). 
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The polymerase chain reaction (PCR) was performed on a ge-
nomic rat DNA template using a Taq PCR Kit (New England 
Biolabs), and the subsequent PCR product was purified using 
a Qiagen PCR Purification Kit (Life Technologies Inc.). The 
MAXIscript T3 transcription kit (Life Technologies Inc.) and 
DIG RNA Labeling Mix (Roche Diagnostics) were used to gen-
erate DIG-labeled Arc intron-specific antisense riboprobes 
from PCR templates. Riboprobes were then purified with mini 
QuickSpin columns (Roche Diagnostics), and FISH was per-
formed on slide-mounted tissue as described previously. Briefly, 
DIG-labeled Arc riboprobe signal was amplified with anti-DIG-
POD (1:300; Roche Diagnostics), Tyramide Signal Amplification 
(TSA) Biotin Tyramide Reagent Pack (1:100; PerkinElmer), and 
Streptavidin-Texas Red (1:200; PerkinElmer). Cell nuclei were 
then counterstained with DAPI (1:2000; Sigma-Aldrich).

1.4   |   Functional Molecular Imaging

The approach used for quantification of Arc and DAPI labels was 
identical to the methods described in Lee et al. (2019) and Lee 
et al. (2022). Briefly, observers blind to experimental conditions 
of each animal quantified DAPI and Arc expression using the 
optical fractionator method in StereoInvestigator software (ver-
sion 10.54, MBF Bioscience, VT) from confocal z-stack images 
collected on an Olympus FV1000 microscope equipped with 
Fluoview software (version 4.0, Olympus, Shinjuku, Japan). 
Unilateral traces of DG, CA3, and CA1 were created at 20X 
magnification on each section, and counting frames were au-
tomatically positioned according systematic-random sampling 
procedures with a 150 × 150 μm grid over the traces for each sub-
region. A series of seven z-stack images at 512 × 512-pixel resolu-
tion was collected at each sampling site with a 60X oil-immersion 
objective starting at the top of the section every 2 μm for a total 
14 μm sampling distance in the z-plane. Image thresholds were 
set at 700 HV ±20 and 550 HV ±20, respectively, in DAPI and 
Texas Red channels, and kept constant across imaging each sec-
tion series such that small Arc foci (2–3 pixels in diameter) and 
DAPI labels could be clearly identified. Digital z-stack images 
were then imported into StereoInvestigator software, such that 
the top image from each stack fell above and the final image 
below a 10-μm height of the optical dissector volume. Arc and 
DAPI were then counted according to optical fractionator in-
clusion–exclusion criteria at each cell's widest point in a 30 × 30 
X 10 μm fractionator probe. One animal was excluded from Arc 
quantification due to tissue damage from experimenter error.

1.5   |   Statistics

All statistical analyses were performed in Python 3.7 using 
Numpy (v1.24.4), Pandas (v2.0.3), and Statsmodels (v0.14.1) 
libraries. Data visualization was performed with the librar-
ies Matplotlib (version 3.7.5) and Seaborn (version 0.13.2) in 
Python. All data and code to perform all analyses and to repro-
duce the main figures can be found at: https://​github.​com/​jquin​
nlee/​HPCArc. To generate dissimilarity matrices for sparsity 
comparison across regions and tasks, we measured the abso-
lute difference of average sparsity in each subregion for MWT 
and CFD cohorts for all pairwise comparisons. We then calcu-
lated the rank-order correlation (Kendall's Tau) of dissimilarity 

matrices for both tasks (True) and performed the same compari-
son for 1e3 random permutations of the same matrices (Shuffle). 
Storage capacity for a Hebb-Marr memory was estimated from 
sparsity measurements as described previously in Thome 
et al. (2017), where

Acknowledgments

We thank Aubrey Demchuk, Valérie Lapointe, and Maurice Needham 
for their technical assistance with this work. This work was supported 
by the Natural Sciences and Engineering Research Council of Canada 
grant awarded to Robert J. McDonald and the Chinook Summer 
Research Studentship awarded to Matt Nielsen.

Data Availability Statement

All data and code for this article can be found at the following Github 
public repository: https://​github.​com/​jquin​nlee/​HPCArc.

References

Bannerman, D. M., J. N. Rawlins, S. B. McHugh, et al. 2004. “Regional 
Dissociations Within the Hippocampus—Memory and Anxiety.” 
Neuroscience and Biobehavioral Reviews 28, no. 3: 273–283. https://​doi.​
org/​10.​1016/j.​neubi​orev.​2004.​03.​004.

Bilkey, D. K., K. R. Cheyne, M. J. Eckert, et  al. 2017. “Exposure to 
Complex Environments Results in More Sparse Representations of 
Space in the Hippocampus.” Hippocampus 27, no. 11: 1178–1191. https://​
doi.​org/​10.​1002/​hipo.​22762​.

Cayco-Gajic, N. A., and R. A. Silver. 2019. “Re-Evaluating Circuit 
Mechanisms Underlying Pattern Separation.” Neuron 101, no. 4: 584–
602. https://​doi.​org/​10.​1016/j.​neuron.​2019.​01.​044.

Chawla, M. K., J. F. Guzowski, V. Ramirez-Amaya, et al. 2005. “Sparse, 
Environmentally Selective Expression of Arc RNA in the Upper Blade of 
the Rodent Fascia Dentata by Brief Spatial Experience.” Hippocampus 
15, no. 5: 579–586. https://​doi.​org/​10.​1002/​hipo.​20091​.

Chawla, M. K., V. L. Sutherland, K. Olson, B. L. McNaughton, and C. 
A. Barnes. 2018. “Behavior-Driven Arc Expression Is Reduced in all 
Ventral Hippocampal Subfields Compared to CA1, CA3, and Dentate 
Gyrus in Rat Dorsal Hippocampus.” Hippocampus 28, no. 2: 178–185. 
https://​doi.​org/​10.​1002/​hipo.​22820​.

Fanselow, M. S., and H. W. Dong. 2010. “Are the Dorsal and Ventral 
Hippocampus Functionally Distinct Structures?” Neuron 65, no. 1: 7–
19. https://​doi.​org/​10.​1016/j.​neuron.​2009.​11.​031.

Ferbinteanu, J., C. Ray, and R. J. McDonald. 2003. “Both Dorsal and 
Ventral Hippocampus Contribute to Spatial Learning in Long-Evans 
Rats.” Neuroscience Letters 345, no. 2: 131–135. https://​doi.​org/​10.​1016/​
s0304​-​3940(03)​00473​-​7.

Guzowski, J. F., B. L. McNaughton, C. A. Barnes, and P. F. Worley. 1999. 
“Environment-Specific Expression of the Immediate-Early Gene Arc 
in Hippocampal Neuronal Ensembles.” Nature Neuroscience 2, no. 12: 
1120–1124. https://​doi.​org/​10.​1038/​16046​.

Hunter, K., L. Spracklen, and S. Ahmad. 2022. “Two Sparsities Are 
Better Than One: Unlocking the Performance Benefits of Sparse–Sparse 
Networks.” Neuromorphic Computing and Engineering 2, no. 3: 034004. 
https://​doi.​org/​10.​1088/​2634-​4386/​ac7c8a.

Jung, M. W., and B. L. McNaughton. 1993. “Spatial Selectivity of Unit 
Activity in the Hippocampal Granular Layer.” Hippocampus 3, no. 2: 
165–182. https://​doi.​org/​10.​1002/​hipo.​45003​0209.

Mmax =
ln(0.5)

ln
(

1 − a2
)

 10981063, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hipo.23651 by J. Q

uinn L
ee , W

iley O
nline L

ibrary on [03/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/jquinnlee/HPCArc
https://github.com/jquinnlee/HPCArc
https://github.com/jquinnlee/HPCArc
https://doi.org/10.1016/j.neubiorev.2004.03.004
https://doi.org/10.1016/j.neubiorev.2004.03.004
https://doi.org/10.1002/hipo.22762
https://doi.org/10.1002/hipo.22762
https://doi.org/10.1016/j.neuron.2019.01.044
https://doi.org/10.1002/hipo.20091
https://doi.org/10.1002/hipo.22820
https://doi.org/10.1016/j.neuron.2009.11.031
https://doi.org/10.1016/s0304-3940(03)00473-7
https://doi.org/10.1016/s0304-3940(03)00473-7
https://doi.org/10.1038/16046
https://doi.org/10.1088/2634-4386/ac7c8a
https://doi.org/10.1002/hipo.450030209


7 of 7

Lee, J. Q., A. M. Demchuk, E. Morgan, et al. 2019. “Place Navigation 
in the Morris Water Task Results in Greater Nuclear Arc mRNA 
Expression in Dorsal Compared to Ventral CA1.” Hippocampus 29, no. 
11: 1133–1138. https://​doi.​org/​10.​1002/​hipo.​23157​.

Lee, J. Q., D. O. Leduke, K. Chua, R. J. McDonald, and R. J. Sutherland. 
2018. “Relocating Cued Goals Induces Population Remapping in CA1 
Related to Memory Performance in a Two-Platform Water Task in Rats.” 
Hippocampus 28, no. 6: 431–440. https://​doi.​org/​10.​1002/​hipo.​22843​.

Lee, J. Q., R. McHugh, E. Morgan, R. J. Sutherland, and R. J. McDonald. 
2022. “Behaviour-Driven Arc Expression Is Greater in Dorsal Than 
Ventral CA1 Regardless of Task or Sex Differences.” Behavioural Brain 
Research 423: 113790. https://​doi.​org/​10.​1016/j.​bbr.​2022.​113790.

Lee, J. Q., E. L. Zelinski, R. J. McDonald, and R. J. Sutherland. 2016. 
“Heterarchic Reinstatement of Long-Term Memory: A Concept on 
Hippocampal Amnesia in Rodent Memory Research.” Neuroscience and 
Biobehavioral Reviews 71: 154–166. https://​doi.​org/​10.​1016/j.​neubi​orev.​
2016.​08.​034.

Li, Z., C. You, S. Bhojanapalli, et al. 2023. “The Lazy Neuron Phenomenon: 
on Emergence of Activation Sparsity in Transformers Conference on 
Parsimony and Learning.”

Liu, V., R. Kumaraswamy, L. Le, and M. White. 2019. “The Utility 
of Sparse Representations for Control in Reinforcement Learning.” 
Proceedings of the AAAI Conference on Artificial Intelligence 33, no. 1: 
4384–4391. https://​doi.​org/​10.​1609/​aaai.​v33i01.​33014384.

Marr, D. 1971. “Simple Memory: A Theory for Archicortex.” 
Philosophical Transactions of the Royal Society of London. B, Biological 
Sciences 262, no. 841: 23–81. https://​doi.​org/​10.​1098/​rstb.​1971.​0078.

Mcclelland, J. L., B. L. Mcnaughton, and R. C. O. Reilly. 1995. “Why 
There Are Complementary Learning Systems in the Hippocampus and 
Neocortex: Insights From the Successes and Failures of Connectionist 
Models of Learning and Memory.” Psychological Review 102, no. 3: 419–
457. https://​doi.​org/​10.​1037/​0033-​295X.​102.3.​419.

McDonald, R. J., R. J. Balog, J. Q. Lee, E. E. Stuart, B. B. Carrels, and N. 
S. Hong. 2018. “Rats With Ventral Hippocampal Damage Are Impaired 
at Various Forms of Learning Including Conditioned Inhibition, Spatial 
Navigation, and Discriminative Fear Conditioning to Similar Contexts.” 
Behavioural Brain Research 351: 138–151. https://​doi.​org/​10.​1016/j.​bbr.​
2018.​06.​003.

Moser, M.-B., and E. I. Moser. 1998. “Functional Differentiation in the 
Hippocampus.” Hippocampus 8, no. 6: 608–619. https://​doi.​org/​10.​1002/​
(sici)​1098-​1063(1998)8:​6<​608.

Rost, B. R., J. Wietek, O. Yizhar, and D. Schmitz. 2022. “Optogenetics 
at the Presynapse.” Nature Neuroscience 25, no. 8: 984–998. https://​doi.​
org/​10.​1038/​s4159​3-​022-​01113​-​6.

Rozeske, R. R., L. Runtz, A. T. Keinath, A. Sossin, and M. P. Brandon. 
2023. “Representational Similarity Supports Rapid Context Retrieval 
During Fear Discrimination in Ventral Hippocampus.” Cold Spring 
Harbor Laboratory. https://​doi.​org/​10.​1101/​2023.​09.​08.​556889.

Ruediger, S., D. Spirig, F. Donato, and P. Caroni. 2012. “Goal-Oriented 
Searching Mediated by Ventral Hippocampus Early in Trial-and-Error 
Learning.” Nature Neuroscience 15, no. 11: 1563–1571. https://​doi.​org/​
10.​1038/​nn.​3224.

Saxena, R., and B. L. McNaughton. 2024. “Bridging Neuroscience and 
AI: Environmental Enrichment as a Model for Forward Knowledge 
Transfer.” ArXiv.

Sternson, S. M., and B. L. Roth. 2014. “Chemogenetic Tools to Interrogate 
Brain Functions.” Annual Review of Neuroscience 37: 387–407. https://​
doi.​org/​10.​1146/​annur​ev-​neuro​-​07101​3-​014048.

Sutherland, R. J., J. O'Brien, and H. Lehmann. 2008. “Absence of 
Systems Consolidation of Fear Memories After Dorsal, Ventral, or 
Complete Hippocampal Damage.” Hippocampus 18, no. 7: 710–718. 
https://​doi.​org/​10.​1002/​hipo.​20431​.

Teyler, T. J., and P. DiScenna. 1985. “The Role of Hippocampus in 
Memory: A Hypothesis.” Neuroscience and Biobehavioral Reviews 9, no. 
3: 377–389. https://​doi.​org/​10.​1016/​0149-​7634(85)​90016​-​8.

Thome, A., D. F. Marrone, T. M. Ellmore, et al. 2017. “Evidence for an 
Evolutionarily Conserved Memory Coding Scheme in the Mammalian 
Hippocampus.” Journal of Neuroscience 37, no. 10: 2795–2801. https://​
doi.​org/​10.​1523/​jneur​osci.​3057-​16.​2017.

Wang, H., E. Miahi, M. White, et al. 2024. “Investigating the Properties 
of Neural Network Representations in Reinforcement Learning.” 
Artificial Intelligence 330: 104100. https://​doi.​org/​10.​1016/j.​artint.​2024.​
104100.

Witharana, W. K., J. Cardiff, M. K. Chawla, et al. 2016. “Nonuniform 
Allocation of Hippocampal Neurons to Place Fields Across all 
Hippocampal Subfields.” Hippocampus 26, no. 10: 1328–1344. https://​
doi.​org/​10.​1002/​hipo.​22609​.

 10981063, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hipo.23651 by J. Q

uinn L
ee , W

iley O
nline L

ibrary on [03/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1002/hipo.23157
https://doi.org/10.1002/hipo.22843
https://doi.org/10.1016/j.bbr.2022.113790
https://doi.org/10.1016/j.neubiorev.2016.08.034
https://doi.org/10.1016/j.neubiorev.2016.08.034
https://doi.org/10.1609/aaai.v33i01.33014384
https://doi.org/10.1098/rstb.1971.0078
https://doi.org/10.1037/0033-295X.102.3.419
https://doi.org/10.1016/j.bbr.2018.06.003
https://doi.org/10.1016/j.bbr.2018.06.003
https://doi.org/10.1002/(sici)1098-1063(1998)8:6%3C608
https://doi.org/10.1002/(sici)1098-1063(1998)8:6%3C608
https://doi.org/10.1038/s41593-022-01113-6
https://doi.org/10.1038/s41593-022-01113-6
https://doi.org/10.1101/2023.09.08.556889
https://doi.org/10.1038/nn.3224
https://doi.org/10.1038/nn.3224
https://doi.org/10.1146/annurev-neuro-071013-014048
https://doi.org/10.1146/annurev-neuro-071013-014048
https://doi.org/10.1002/hipo.20431
https://doi.org/10.1016/0149-7634(85)90016-8
https://doi.org/10.1523/jneurosci.3057-16.2017
https://doi.org/10.1523/jneurosci.3057-16.2017
https://doi.org/10.1016/j.artint.2024.104100
https://doi.org/10.1016/j.artint.2024.104100
https://doi.org/10.1002/hipo.22609
https://doi.org/10.1002/hipo.22609

	Sparsity of Population Activity in the Hippocampus Is Task-Invariant Across the Trisynaptic Circuit and Dorsoventral Axis
	ABSTRACT
	1   |   Detailed Methods
	1.1   |   Animals
	1.2   |   Experimental Design
	1.3   |   Tissue Processing
	1.4   |   Functional Molecular Imaging
	1.5   |   Statistics

	Acknowledgments
	Data Availability Statement
	References


