
Mex-File Plug-in for Fast MATLAB Port I/O Access
(32-bit MATLAB on 64-bit Windows XP, Vista, 7)

As of April 2010, the student version of MATLAB installs as a 32-bit application...even on 64-bit Windows.
This document describes how to setup and run the 64-bit inpoutx64.sys driver on 64-bit Windows and then

access it via the IO32 mex file interface in a 32-bit MATLAB application.
A version of this software for 64-bit MATLAB on 64-bit Windows can be found here.

A version of this software for 32-bit Windows operating systems can be found here.

Windows Vista and Windows 7 (32-bit users) should note the Vista Installation Notes near the end of this

document.

In order to accomplish very fast port I/O using a NO COST add-on to MATLAB, we have developed a C++

extension (mex-file) that uses native methods to access low-level hardware. This 32-bit mex-file is named

io32.mexw32. It uses a freeware self-installing kernel-level system driver that is exported from a dynamic link

library named inpout32a.dll. [Note: Self-installation of the driver requires that the MATLAB be run with

Administrator privileges. The driver must have been previously installed in order to support non-Administrator
users].

Once the required software modules are installed in the appropriate file directories, you can use io32() to read

and write to I/O port locations anywhere in the 64K address space. A simple benchmark test (iotimer_io32b.m

or iotimer_io32.m) reveals that port I/O latencies of approximately 0.010 msec (i.e., 10 microseconds) can be

achieved from within MATLAB using this approach.

To install this expanded capability: download the io32.mexw32 module and move it to a directory in your

MATLAB path (e.g., c:\cog2000\Cogent2000v1.29\Toolbox in the case of the USD PSYC 770 standard
Cogent 2000 installation specification). Users of older versions of MATLAB 7 should rename io32.mexw32 to

io32.dll (since 32-bit mex files used to use the .dll suffix rather than the more informative .mexw32 suffix

currently in use). Next, download the inpout32a.dll module and move it to the C:\windows\sysWOW64

directory.

io32() Command Usage Summary:

object = io32;

Calling io32 with no input arguments from the MATLAB command

window creates an instance of the io32 interface object and returns

a pointer to its location. This command must be issued first since

the object pointer is a required input argument for all other calls to

io32. This io32 call will not work properly unless a return variable

is specified (i.e., 'object' in the example to the left).

Calling io32() using one input argument and a single return variable

causes the inpoutx64.sys kernel-level I/O driver to be extracted

http://people.usd.edu/~schieber/psyc770/IO64.html
http://people.usd.edu/~schieber/psyc770/IO32.html
http://sunburst.usd.edu/~schieber/psyc770/misc/iotimer_io32b.m
http://sunburst.usd.edu/~schieber/psyc770/misc/iotimer_io32.m
http://sunburst.usd.edu/~schieber/psyc770/misc/io32.mexw32
http://sunburst.usd.edu/~schieber/psyc770/misc/inpout32a.dll

status = io32(object);

from inpout32a.dll and automatically installed (i.e., no manual

driver installation is required). object is the pointer to a previously

created instance of io32 (see the step performed above); and,

status is a variable returned from the function that describes

whether the driver installation process was successful (0 =

successful). Subsequent attempts to perform port I/O using io32()

will fail if a non-zero status value is returned here. This step must

be performed prior to any subsequent attempts to read or write

I/O port data.

io32(object, address, data);

Calling io32() with three input parameters allows the user to output

data to the specified I/O port address. object is the pointer to a

previously created io32 object (described above); address

specifies the physical address of the destination I/O port (<64K);

and, data represents the value (between 0-255) being output to the

I/O port.

data = io32(object, address);

Calling io32() using two input arguments and one return variable

allows the user to read the contents of the specified I/O port.
object is the pointer to a previously created instance of io32 (see

above), address specifies the location of the I/O port being read;
and, data contains the integer-format value returned after reading

the I/O port.

The following MATLAB command snippet demonstrates how to use the io32() extension:

%create an instance of the io32 object
ioObj = io32;
%

%initialize the inpoutx64 system driver
status = io32(ioObj);

%
%if status = 0, you are now ready to write and read to a hardware port

%let's try sending the value=1 to the parallel printer's output port (LPT1)
address = hex2dec('378'); %standard LPT1 output port address

data_out=1; %sample data value
io32(ioObj,address,data_out); %output command

%
%now, let's read that value back into MATLAB
data_in=io32(ioObj,address);

%
%when finished with the io32 object it can be discarded via

%'clear all', 'clear mex', 'clear io32' or 'clear functions' command.

MATLAB Scripts to Simplify Port I/O

The code examples above reveal that using the io32() extensions is a bit complex. In an attempt to reduce this
complexity, a set of MATLAB scripts has been developed to simplify I/O programming.

In order to have access to these scripts: download the io32.mexw32, config_io.m, inp.m and outp.m files

and move them to a directory in your MATLAB path. In addition, download the inpout32a.dll module and
move it to the C:\windows\sysWOW64 directory as previously described above.

MATLAB I/O Script Usage:

config_io;
Installs the inpoutx64.sys driver required to access low-level
hardware. This command must be given prior to any attempts to

use the custom inp() or outp() scripts.

outp(address, byte);
This function writes the 8-bit value passed in the variable named
byte to the I/O port specified by address.

byte = inp(address);
This function read the I/O port location specified by address and

returns the result of that operation.

A simple benchmark (iotimer_inp.m) reveals that I/O using these scripts is significantly slower than calling the

io32() object directly (as demonstrated above). Instead of being able to read a port with a latency of

approximately 10 microseconds, using the inp() script yields a latency of approximately 40 microseconds. This

is fast enough for many experimental psychology applications (such as scanning a button box, etc.). Use direct
calls to io32() if your application requires the shortest possible I/O latencies (e.g., updating an analog output

stream).

The following MATLAB code snippet demonstrates how to use the m-file I/O scripts:

%initialize the inpoutx64 low-level I/O driver
config_io;

%optional step: verify that the inpoutx64 driver was successfully installed
global cogent;

if(cogent.io.status ~= 0)
 error('inp/outp installation failed');

end
%write a value to the default LPT1 printer output port (at 0x378)

address = hex2dec('378');

byte = 99;

outp(address,byte);
%read back the value written to the printer port above

datum=inp(address);

http://sunburst.usd.edu/~schieber/psyc770/misc/io32.mexw32
http://sunburst.usd.edu/~schieber/psyc770/m-files/config_io.m
http://sunburst.usd.edu/~schieber/psyc770/m-files/inp.m
http://sunburst.usd.edu/~schieber/psyc770/m-files/outp.m
http://sunburst.usd.edu/~schieber/psyc770/misc/inpout32a.dll
http://sunburst.usd.edu/~schieber/psyc770/m-files/iotimer_inp.m

Windows Vista and 7 Installation Notes
Although our lab does not yet have much experience with Windows Vista, we were able to successfully install

the software described above using the procedure described below (using MATLAB 7.5.0-R2007b and
MATLAB 7.7-R2008b):

1. Log in as a user with Administrator privileges.

2. Disable UAC (User Account Control). An easy way to do this in Windows Vista is to: Start-Run-
MSCONFIG. Select the Tools tab, scroll down to the option for "Disable UAC" and select it. Next, press the

"Launch" button. You must then RESTART the system for this change to take effect.

3. Download and copy the inpout32a.dll file to the C:\windows\sysWOW64 directory.

4. Download the io32.mexw32, config_io.m, inp.m and outp,m files to a working directory of your choice. This
directory will be added to your MATLAB path in step-6 below.

5. Start MATLAB in "Run as Administrator" mode (Right-click icon and select "Run as Administrator").

6. Add the directory containing the downloaded m-files to your MATLAB path via the File|Set Path|Add with
Subfiles... menu command.

7. Run "config_io" from the MATLAB command window. If there's no error message at this point, you've

successfully installed the software.

8. Optional: If you need to re-enable UAC (User Account Control), follow the instructions in step-2 but select
"Enable UAC" instead of "Disable UAC".

Parsing Individual Bits within an I/O Byte
When one reads an I/O port one is usually interested in the status of a single bit among the 8-bits returned by a
call to inp(address). MATLAB provides a number of functions to deal with data on a 'bitwise' basis. For

example, the following lines of code show how to test the status of a single input line using the bitget() function:

% Read current value of an input port at the specified address
% Note that the value returned by inp(address) is coerced into an 8-bit format using uint8

response = uint8(inp(address));

% Take some action if the least-significant-bit is currently at logical-0 level

if (bitget(response,1) == 0)
 display('Input is active')

end

See also: bitset(), bitand(), bitor(), bitxor() for additional bitwise operators

Additional information about the freeware INPOUTX64 driver for 64-bit Windows XP/Vista/7 can be found
here.

Special thanks to Phil Gibbons (www.highrez.co.uk) for providing the signed 64-bit version of the inpoutx64.sys

kernel-level driver.

Versions of this software for 32-bit Windows systems can be found here

Last revised: 3 May 2010

http://sunburst.usd.edu/~schieber/psyc770/misc/inpout32a.dll
http://sunburst.usd.edu/~schieber/psyc770/misc/io32.mexw32
http://sunburst.usd.edu/~schieber/psyc770/m-files/config_io.m
http://sunburst.usd.edu/~schieber/psyc770/m-files/inp.m
http://sunburst.usd.edu/~schieber/psyc770/m-files/outp.m
http://www.highrez.co.uk/Downloads/InpOut32/default.htm
http://www.highrez.co.uk/
http://people.usd.edu/~schieber/psyc770/IO32.html

Professor Schieber's Home Page - Previous Page

http://www.usd.edu/~schieber
javascript:history.back()

