

Kathy Low

Beckman Institute, University of Illinois Fast Optical Imaging Summer Workshop, May 23-25, Urbana, Illinois

Prior to Data Collection...

Design an Experiment

Determine what brain regions you need to sample

Implement the experiment with software that can send out a trigger and/or marker to synchronize stimuli with Boxy recording

Design a montage (placement of sources and detectors)

Check source/detector distances for cross-talk

Set Boxy to record continuously for the length of 1 block (and set all other Boxy parameters)

Check the timing consistency between behavioral expt and Boxy recording

Time Division Multiplexing of Sources (aka Muxing)

- Not all sources are on at the same time, instead they come on in series
- We call each slice of time that a source is on a "mux channel" or "mux slot"
- The PMT (detector) cannot differentiate sources, it will collect all light available during any given time
- Therefore, you must take care when placing sources that share a mux slot (i.e., 2 sources that turn on at the same time)

Switch Settings on Imagent Switch 16 mode

Maximum of 2 sources on at a given time (per Imagent)

Maximum of 16 MUX channels

Switch Settings on Imagent Switch 8 mode

Maximum of 4 sources on at a given time (per Imagent)

Maximum of 8 MUX channels

EROS Montages

CNL - UIUC

Considerations for Montage Design

- The more crossing/overlap of channels, the better the S/N and the better the localization.
- The more varied the src-det distances, the better coverage across cortical depths.
- To avoid cross-talk: when 2 or more diodes are turning on during the same MUX slot, only 1 can be within 6 cm of a given detector
 - This distance will be smaller with certain populations (older adults, infants) due to increased transparency.
- Optimize design such that most src-det pairs have a distance of 2-5 cm (most at 2.5 - 3 cm)
 - Too short, not hitting cortex
 - Too long, lose too many photons

Example:

Dual wavelengths (2 sources in each hole)
Three patches (bilateral frontal and occipital)

9

11

911

830 nm

690 nm

Example:

- One wavelength (1 source in each hole)
- Almost full cortical coverage
 - 24 Detectors
 - 60 Sources (mux 16)

Full Montage

	Number	%
< 2 cm	1	0.3%
2.0-3.5	118	30.7%
3.5-4.5	38	9.9%
4.5-5.5	39	10.2%
>5.5	188	49.0%
total	384	

Patches

	Number	%
< 2 cm	2	0.9%
2.0-3.5	102	45.5%
3.5-4.5	38	17.0%
4.5-5.5	26	11.6%
>5.5	56	25.0%
total	224	

Why do we use layouts based on rows?

- Maximizes the spatial sampling across depths
- Maximizes the overlap of channels

- For large montages, we have scripts to help automate the process of assigning mux channels while avoiding cross-talk (see Kyle Mathewson and Ed Maclin)
- Under development: using multi-objective optimization theory to design montage configurations automatically using a genetic algorithm to search the space of possible montage configurations and return solutions achieving localized sampling and cross-talk minimization objectives (see David Steines and Pauline Baniqued)

Syncing stimulus presentation with data collection

- Boxy receives a trigger to start recording data
 - Via BNC connection
- Boxy can also record a digital code that can mark the timing and type of specific events in the data stream
 - Via a 9 pin D-connector
 - These codes appear in the data file under the column labeled digital auxiliary (on mux 1 only)
 - We cross check this timing with the output of our experiment presentation software

BOXY: Imagent data collection software

Setting the Recording Window in Boxy (Edit Record Settings) Record

Record = data point or sampling point

This will usually be set to 1 because we will retrigger Boxy with every block .

This will be determined by the timing of a single block.

"File fill time" should be a little longer than the time it take to complete 1 experimental block.

Ex. Optical sampling rate = 62.5 Hz; Block duration = 3.3 min Sampling period = 1000/62.5 = 16 ms
12600 pts * 16 = 201,600 ms = 201.6 sec = 3.36 min

→optical will collect data continuously for 3.36 minutes

Timing/Averaging Settings in Boxy

"Waveform" refers to 1 cycle of the CCF

Number of samples/cycle of the CCF

Will change ADC Sample Rate, Divisor, and DMA rates

Data Update Rate = final sampling rate

The final sampling rate is determined by:

- 1. The number of sources (mux channels)
- 2. The cross-correlation frequency
- 3. The number of waveforms to skip
- 4. The number of waveforms to average
- The number of cycles to average per data update cycle

File format settings in Boxy --For compatibility with p_pod

Ascii Record File Format											
File Format Delimitate Columns With											
Parse Results from Individual Signals. (External MUX Channels)											
✓ Group AC DC and Phase											
✓ Create Companion Settings File (Settings File will have .set extension)											
✓ Include Header Section											
File Contents											
☐ Exclude AC ☐ Exclude DC											
☐ Exclude Ph ☐ Exclude Auxiliary											
Exclude data not displayed in Sig. Status Map											
Default File Extension txt											
OK Cancel <u>H</u> elp											

Tips for recording that we've learned over the years...

- Support the fibers from above
 - Less weight on subject
 - Added support near the receiving end of the fiber
 - Less tangling/breakage of fibers
 - Adds clearance to the back of the head
- Don't keep graphs or text monitors open while recording data
 - Because it increases the risk of timing errors (i.e., missed packets)
- Limit the length of one block to less than 5 minutes, ideally less than 3
 - This greatly reduces movement artifacts because it give the subject a chance to squirm a little between blocks
- The subject monitor refresh rate CAN appear as an aliased frequency in the AC intensity (and produce artificially low phase variability)
 - Minimize by using black/dark backgrounds instead of white
 - Cover regions of helmet/patch that might allow stray light in
 - Inspect the frequency spectrum of your channels as a quality control measure
- The subject chair is an important piece of equipment
 - Comfortable!
 - No swivel, recline, or wheels

Checking signal quality just prior to data collection

- Adjust gain (bias) of each detector such that DC values are near 16000 (limited by the shortest distance channels)
 - This will minimize the risk of over-voltaging
 - The sum of AC, DC, and PH has to be less than the A-to-D converion range (32K)
- Good channels should have:
 - AC values above 100
 - PH standard deviations below 5
 - Your shortest channels should ideally have stdev less than 1.
 - The lower the stdev, the better your signal-to-noise
- If you don't have very many channels in your montage, you can also plot each channel as a time course (AC intensity) to check that a pulse is visible.
 - You may want to use some of Boxy's calculation features to filter the plotted data to isolate the pulse signal

Boxy output file - header

• Important header information (appears at the top of the file)

BOXY.EXE: ISS Oximeter R&D Program Version 0.40 Ascii Record File

#ACQ INFORMATION

- 8 Detector Channels
- 10 External MUX Channels
- o Auxiliary Channels
- 6250 Waveform (CCF) Frequency (Hz)
- 2 Waveforms Skipped
- 8 Waveforms Averaged
- 1 Cycles Averaged
- 8 Acquisitions per Waveform
- 62.5000 Updata Rate (Hz)

#FILE INFORMATION

FALSE -- External MUX Channel results are NOT parsed.

TRUE -- AC DC and Phase are GROUPED.

TRUE -- Companion Program Settings File CREATED.

FALSE -- AC data not excluded

FALSE -- DC data not excluded

FALSE -- Phase data not excluded

TRUE -- Auxillary Chn. data excluded

Tab delimiters

• After this info, there will be more header info, but this is for use when collecting absolute oxy/deoxy concentrations (i.e., multi-distance method with dual wavelengths)

Boxy output file - Data

All	58
	X122
867	大文文学
	-
	A CONTRACTOR OF THE PARTY OF TH

#DATA B	EGINS																				
record	exmux	A-AC	A-DC	A-Ph	B-AC	B-DC	B-Ph	C-AC	C-DC	C-Ph	D-AC	D-DC	D-Ph	time	group	step	mark	flag	aux-1	aux-2	digaux
1	1	2.817	15.22	180	119.3	264.8	180	1842	3165	205.8	1565	4440	85.45	10014.3	1	1	0	768	0	0	0
1	2	2.946	9.719	224.2	239.1	472.2	200.2	3020	5132	225.2	40.62	93.75	88.24								
1	3	2534	4644	166.5	4791	9098	126.5	9.868	32.88	240.8	93.41	351.7	148.8								
1	4	4919	8645	202.7	7746	13979	164.9	6.062	25.16	246.9	74.4	169.9	174.7								
1	5	10.74	31	132.8	26.51	44.25	161.6	2.75	9.813	174.2	1465	5433	147								
1	6	4.223	15.53	217.8	4.74	25.5	154.6	2.128	10.91	222.8	3411	7663	153.6								
1	7	4360	7501	197.2	10278	18284	157.8	35.35	65.78	196.5	121.2	215.9	230.9								
1	8	4185	7740	175.6	10659	20359	134.8	34.35	66.22	211.7	124.9	246	214.8								
1	9	947.2	1829	188.5	326.6	252.1	143.9	3.193	17.72	236.2	4.538	7.219	169.3								
1	10	898	1634	202	7.778	38.97	166.2	3.273	12.09	235.4	3.157	9.625	197.3								
1	11	48.42	87.56	244.7	7.337	28.78	188.2	5519	9657	164.5	28.03	54.75	249.4								
1	12	258.2	480.7	219.4	9.333	25.47	193.9	8231	13124	176.8	170.3	329.9	230								
1	13	5839	10142	208.5	16.04	49.38	211.9	52.88	128.8	217.8	7174	12634	216.9								
1	14	5873	11083	179.8	47.1	97.81	166.8	28.77	57.75	208	5123	9737	189.9								
1	15	85.5	74.28	111.8	5251	9316	162.6	194.2	320.6	223	89.78	59.56	151.4								
1	16	18.34	30.28	213.6	5943	11316	137.1	297.1	517.4	204.3	6.706	10.66	220.3								
2		4.337		180	192.4	314.6	180	1790	3201	211.9	1565	4426	94.23	10014.3	1	1	0	0	0	0	0
2	2	2.306	10.16	155.7	247.9	477.2	206.4	3059	5137	231.8	41.02	94	91.3								
2	3	2547	4615	112.6	4789	9119	135.3	12	31.44	206.2	108.7	346.5	157.2								
2	4	4800	8616	150	7635	13885	173.5	9.216	22.53	215.1	67.55	167.3	184.7								
2	5	11.35	27.13	81.3	19.25	43.63	161.1	1.52	9.531	250.8	1399	5348	155.5								
2	6	4.346	12.88	147.8	7.594	26.19	187.4	0.622	9.594	295.2	3395	7633	162.5								
2	7	4274	7407	143.8	10408	18268	165.8	29.69	63.16	230.4	120.6	215	239.4								
2	8	4146	7651	122.6	10701	20375	143.1	27.23	63.13	224.7	132.8	250.8	219.4								
2	9	925.9	1769			250.1				191.8		6.969	199.8								
2	10	908.4	1646			45.44		1.225	12.34		3.757	11.38	173.7								
2	11	46.23	89.38	191.7	2.491	23.72	150.4	5618	9808	172.1	32.86		264.7								
2	12	252	474.7	164.3			165.4	8303	13169	184.1	172.8		240.2								
2	13	5786	10087	155.9	28.18	56.63	198.6		133		7139	12607									
2	14		10996			89.81		43.54	67.59	210.1			198.2								
2	15	85.42					170.5	210			95.57		160.3								
2		11.78									3.121										
							5.5		0.5												

Hardware Maintenance

- Routine testing of fibers, diodes, and PMTs is recommended.
 - Frequency of checks dependent on use
- Using a phantom to acquire sample data (keeping gain constant):
 - Test each fiber in a standard diode
 - Test each detector bundle in a standard PMT
 - Using a "good" fiber (one reserved only for testing), test each diode
 - Using a "good" detector bundle, test each PMT