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A B S T R A C T

Background
Electroencephalography (EEG) experiments are typically performed in controlled laboratory settings to minimise

noise and produce reliable measurements. These controlled conditions also reduce the applicability of the obtained results
to more varied environments and may limit their relevance to everyday situations.
New method

Advances in computer portability may increase the mobility and applicability of EEG results while decreasing costs.
In this experiment we show that stimulus presentation using a Raspberry Pi 2 computer provides a low cost, reliable al-
ternative to a traditional desktop PC in the administration of EEG experimental tasks.
Results

Significant and reliable MMN and P3 activity, typical event-related potentials (ERPs) associated with an auditory
oddball paradigm, were measured while experiments were administered using the Raspberry Pi 2. While latency differ-
ences in ERP triggering were observed between systems, these differences reduced power only marginally, likely due to
the reduced processing power of the Raspberry Pi 2.
Comparison with existing method

An auditory oddball task administered using the Raspberry Pi 2 produced similar ERPs to those derived from a desk-
top PC in a laboratory setting. Despite temporal differences and slight increases in trials needed for similar statistical
power, the Raspberry Pi 2 can be used to design and present auditory experiments comparable to a PC.
Results

Our results show that the Raspberry Pi 2 is a low cost alternative to the desktop PC when administering EEG exper-
iments and, due to its small size and low power consumption, will enable mobile EEG experiments unconstrained by a
traditional laboratory setting.

© 2016 Published by Elsevier Ltd.
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1. Introduction

Laboratory settings provide highly controlled environments ideal
for sensitive measures and experimentation such as electroen-
cephalography (EEG) recordings, which can otherwise be contami-
nated by background interference due to sound, muscle activity, and
radio frequency waves (Van Hoey et al., 2000). Unfortunately these
benefits are also coupled with certain drawbacks as results may not
be entirely applicable to settings outside the laboratory. Alternative
EEG designs allow for increased mobility but are often expensive,
utilise fewer electrodes, or require the use of cumbersome equipment.
A proposed solution to escaping the confines of the laboratory in-
volves a Raspberry Pi 2 computer, a small, low-cost (∼$35) device
that has become popular among hobbyists and computer engineers but
has also been utilised for research purposes. The Raspberry Pi de-
vice has been programmed to use a camera for real-time identifica-
tion of individuals using palm vein patterns (Joardar et al., 2015), for
comparison of protein sequences (Robson and Barker, 2015), analy
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sis of light pulses used in non-invasive diffuse correlation spec-
troscopy (Tivnan et al., 2015), and is capable of intensive data analysis
and data mining (John et al., 2015).

In traditional laboratory experiments a Macintosh or Windows PC
running customisable software, such as E-Prime, Superlab, or Mat-
lab with the Psychophysics toolbox, are used to present various stim-
uli. Such desktop computers are computationally powerful and can
present a variety of highly controlled and accurate stimuli, but these
systems come at both a monetary and mobility cost, weighing sev-
eral kilograms and costing hundreds of dollars. While something more
portable, such as a laptop or tablet can be used, the cost of EEG hard-
ware is still significant. The Raspberry Pi 2 is a versatile solution to
the issue of cost, mobility, and reliability when it comes to stimulus
presentation. This device is inexpensive, lightweight (approximately
45 g), and highly versatile. The Raspberry Pi 2 offers several ways to
connect external USB peripherals, displays, and auditory equipment,
and it has 40 General Purpose Input/Output (GPIO) pins. Many of
these pins can be programmed for use in various tasks such as flash-
ing LEDs and controlling electric motors. The low power require-
ments allow the Raspberry Pi 2 to be powered by any 5 V, 1.2A power
supply (such as 4 AA batteries in series) without generating a con-
siderable amount of heat, allowing the device to run for long peri
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ods depending on battery size and any connected peripherals. The
Python programming language can be used to generate auditory and
visual stimuli while software specific for cognitive psychological test-
ing, such as OpenSesame (Mathôt et al., 2012), offers an intuitive
method for experimental design. Through OpenSesame and Python it
is possible to recreate a traditional auditory oddball task involving the
presentation of common, standard tones and rare, target tones. Event
related potentials (ERPs) that occur time-locked with the presentation
of these tones can then be derived from collected EEG data.

This paper demonstrates that the Raspberry Pi 2 can be used to pre-
sent stimuli for EEG experiments and recordings, allowing for more
mobile psychological experiments. An auditory oddball-paradigm was
presented using both the Raspberry Pi 2 and a traditional desktop
PC while EEG data was recorded to an external laptop. The results
demonstrate that similar temporal and spatial ERP activity is evoked
by both computer systems.

2. Material and methods

2.1. Participants

A total of 10 members of the university community participated in
the experiment (mean age = 21.10; age range = 18–25; 1 male). Each
participant completed an identical session on both the Raspberry Pi
2 computer and a desktop PC computer with order being counterbal-
anced. Participants were all right-handed, and all had normal or cor-
rected normal vision and no history of neurological problems. All par-
ticipants gave informed consent, were compensated at a rate of $10/h
for their time, and the experimental procedures were approved by the
internal Research Ethics Board of the University of Alberta.

2.2. Materials & procedure

Participants completed an auditory oddball task to measure their
P3 and MMN responses to task-relevant, target tones. A pair of Log-
itech Z130 speakers played one of two different tones (either 1500 or
1000 Hz; sampled at 44,100 Hz; two channel; 16-ms duration; 2-ms
linear ramp up and down), with the rare target tone always at 1500 Hz.
The volume of the sound output was kept constant for every partici-
pant. Speaker volume was increased for the Raspberry Pi 2 to match
that of the desktop PC since the Raspberry Pi 2 was quieter com-
pared to the desktop PC when the volume level of the speakers were
matched. Participants were asked to sit still and fixate on a 1° white
cross in the center of a black background that stayed constant through-
out the auditory task. Whenever the rare tone was heard, participants
were instructed to move only their right hand to press the spacebar on
a keyboard placed in front of them.

Participants were seated 57-cm away from a 1920 × 1080 pixel
ViewPixx/EEG LED monitor running at 120 Hz with simulated-back-
light rastering. For the Rapsberry Pi 2, stimuli were presented using a
Raspberry Pi 2 model B computer running version 3.18 of the Rasp-
bian Wheezy operating system, using version 0.24.7 of the OpenS-
esame software (Mathôt et al., 2012), and version 2.7.2 of the Python
programming language. Video output was via the onboard VideoCore
IV 3D graphics processor connected through HDMI, and audio output
was via the onboard 900 MHz quad-core ARM Cortex-A7 CPU con-
nected through a 3.5 mm audio connector. For the desktop PC, stim-
uli were presented using a Windows 7 PC running Matlab R2012b
with the Psychophysics toolbox (Brainard, 1997). Video output was
via an Asus Striker GTX760, and audio was output via an Asus
Xonar DSX sound card. Coincident in time with sound onset, 8-bit
TTL pulses were sent to the EEG amplifier by a parallel port cable

connected to the stimulus PC computer to mark the data for ERP aver-
aging. For the Raspberry Pi 2, the TTL pulses were sent to the ampli-
fier via a parallel port to serial port cable connected to the GPIO pins,
specifically pins 24 and 25.

Each participant completed three blocks of 250 trials for a total of
750 trials. Each trial had a 1/5 likelihood of being a target trial. Each
trial began with a pre-tone interval chosen randomly from a uniform
distribution between 1000 and 1500 ms, followed by the tone onset.
Fig. 1A demonstrates the experimental task, Fig. 1B shows how equip-
ment was setup, and Fig. 1C shows how the Raspberry Pi 2 GPIO pins
were wired to the amplifier in order to send the TTL pulses.

2.3. Pre-trial timing adjustment

In a previous pilot study we compared the pre-tone interval and
found this delay was longer for the Raspberry Pi 2 compared to the
PC (MPi = 1.4458s; SDPi = 0.0078s; MPC = 1.2925s; SDPC = 0.0011;
t(6) = 52.7625; p < 0.001) despite both experiments being pro-
grammed as identical as possible. To ensure that any differences in the
ERPs observed were not due to pre-tone interval differences, the inter-
val distribution for the Raspberry Pi 2 was shortened by approximately
160 ms so that the average interval length for the Raspberry Pi 2
more closely matched the PC. Following this correction the Raspberry
Pi 2 pre-tone interval was more similar to the PC (MPi = 1.2860s;
SDPi = 0.0036s; MPC = 1.2941s; SDPC = 0.0033; t(9) = −4.2501;
p = 0.0021).

2.4. EEG recording

Recording was done using Brain Products Active Wet electrodes
(Brain Products actiCAP adjusted for signal quality). Impedance was
not measured directly but inferred from data quality as per the sug-
gested usage guidelines provided by the manufacturer (Brain
Products, 2014). All electrodes were arranged in 10–20 positions
(Fp2, F3, Fz, F4, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P8, and Oz).
A ground electrode was used and embedded in the cap at position
Fpz. Electrolyte gel was applied to this ground electrode. EEG was
recorded online and referenced to an electrode clipped to the left ear
lobe, and offline the data were re-referenced to the arithmetically de-
rived average of the left and right ear lobe electrodes. Ag/AgCl pin
electrodes were used, with SuperVisc electrolyte gel and mild abra-
sion with a blunted syringe tip used to lower impedances. Gel was ap-
plied and impedances were lowered until data quality appeared good
(inferred to be around 50 kΩ from past research; Kappenman and
Luck, 2010; Laszlo et al., 2014; Mathewson et al., in press). Elec-
trolyte gel was used to lower the impedance of the electrodes on the
ears.

In addition to the 15 EEG sensors, 2 reference electrodes, and
the ground electrode, the vertical and horizontal bipolar EOG was
recorded from passive Ag/AgCl easycap disk electrodes affixed above
and below the left eye, and 1 cm lateral from the outer canthus of each
eye. Electrolyte gel was used to lower the impedance of these EOG
electrodes based on visual inspection of the data. These bipolar chan-
nels were recorded using the AUX ports of the V-amp amplifier, us-
ing a pair of BIP2AUX converters, and a separate ground electrode
affixed to the central forehead.

EEG was recorded with a V-amp 16-channel amplifier (Brain
Products). Data were digitized at 500 Hz with a resolution of 24 bits,
and filtered with an online bandpass with cutoffs of 0.629 Hz and
30 Hz, along with a notch filter at 60 Hz. The experiment took place
in a dimly lit sound and radio frequency attenuated chamber from
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Fig. 1. Experimental task presented and equipment setup. (A) Auditory oddball task presented to participants. 750 tones were played, 80% low and 20% high, and participants re-
sponded to rare tone. (B) Set-up of equipment. Participants completed experiment twice, starting with the Raspberry Pi 2 or PC. Triggers sent to amplifier by the Raspberry Pi 2 or
PC. EEG data was measured with 16 channel active wet electrode cap and recorded onto a laptop PC connected to the amplifier. Arrows indicate the direction of data transmission.
(C) Wiring diagram showing how the Raspberry Pi 2 was connected to the EEG amplifier. An Adafruit Pi Cobbler Kit was used to make the GPIO pins easier to access. GPIO pins
24 and 25 were connected to pins 2 and 3 of the parallel port end of a parallel to serial port adapter cable. The serial port end of this cable was then connected to the EEG amplifier.
GPIO pins 24 and 25 were used to send TTL pulses to the amplifier to mark the presentation of low and high tones, respectively. A GPIO ground pin was also connected to the ground
pin of the parallel port.

Electro-Medical Instruments, with copper mesh covering the window.
The only electrical devices in the chamber were an amplifier, speak-
ers, keyboard, mouse, and monitor. The monitor ran on DC power
from outside the chamber, the keyboard and mouse were plugged into
USB outside the chamber, and the speakers and amplifier were both
powered from outside the chamber. A wireless Logitech K330 key-
board was also in the chamber for use on the Raspberry Pi 2. The
lights and fan were turned off, and nothing was plugged into the in-
ternal power outlets. Any other devices transmitting or receiving radio
waves (e.g., cell phones) were removed from the chamber for the du-
ration of the experiment.

2.5. EEG analysis

Analyses were computed in Matlab R2012b using EEGLAB
(Delorme and Makeig, 2004) and custom scripts. The timing of the
TTL pulse was marked in the recorded EEG data and used to con-
struct 1000-ms epochs time locked to the onset of standard and tar-
get tones, with the average voltage in the first 200-ms baseline period
subtracted from the data for each electrode and trial. To remove ar-
tifacts due to amplifier blocking and other non-physiological factors,
any trials with a voltage difference from baseline larger than ±500 μV
on any channel (including eyes) were removed from further analy-
sis. At this time, a regression based eye-movement correction proce-
dure was used to estimate and remove the artifactual variance in the
EEG due to blinks as well as horizontal and vertical eye movements
(Gratton, Coles, and Donchin, 1983). After identifying blinks with a
template based approach, this technique computes propagation fac-
tors as regression coefficients predicting the vertical and horizontal

eye channel data from the signals at each electrode. The eye chan-
nel data is then subtracted from each channel, weighted by these
propagation factors, removing any variance in the EEG predicted
by eye movements. On average artifact rejection left roughly equal
number of trials per participant; Raspberry Pi 2 (Mtarg = 144 trials;
rangetarg = 125–150; Mstand = 569; rangestand = 504–600) and PC
(Mtarg = 142; rangetarg = 125–151; Mstand = 578;
rangestand = 530–618), from which the remaining analyses are com-
puted. No further filtering was done on the data.

3. Results

3.1. Trigger-tone latency

To directly and accurately measure potential latency differences
between the TTL pulse onset and tone onset, following the conclu-
sion of the study both tones were played to the speakers and simul-
taneously attenuated then digitized by the EEG amplifier using cus-
tom built hardware. This hardware was connected to the 3.5 mm head-
phone jack of the Raspberry Pi 2 or PC and would send a unique
TTL pulse to the amplifier each time the tone was played to accu-
rately mark tone onset. This setup allowed for direct visualization and
measurement of the tone with respect to the TTL pulse. The start
of each tone in the digitized recording, in relation to the onset of
the trigger sent by the Raspberry Pi 2 or PC, was indicated as the
first instance the measured voltage reached positive 1000 μV. Latency
between the TTL pulse and tone onset was measured and averaged
across 212 trials for the Raspberry Pi 2 and the PC (MPi = 34.6710 ms;
SDPi = 4.7250 ms; MPC = 45.8250 ms; SDPC = 0.2803 ms). While the
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latency was shorter for the Raspberry Pi 2 than the PC
(t(212) = 34.2647; p < 0.001), there was more variability in these la-
tencies. Fig. 2A shows a histogram of the latencies between trigger
onset and tone onset for the Raspberry Pi 2 and PC. Fig. 2B shows
representative examples of the tones, attenuated and recorded by the
amplifier. On average, latency between the TTL pulse and tone was
11.1540 ms (SD = 4.7397 ms) longer on the PC than the Raspberry
Pi 2. This difference led to temporal offsets in P3 and MMN activ-
ity for both systems. In order to minimise variance the triggers for the
Raspberry Pi 2 were shifted earlier in time by 11.15 ms to more ac-
curately match the trigger-tone latency of the PC. Subsequent analysis
was done using these corrected timings.

3.2. Single trial noise

We estimated the noise in the data on individual trials in two ways.
First we computed the average frequency spectra of the baseline pe-
riod in each EEG epoch, as shown in Fig. 3A. For each participant we
randomly selected 504 of their artifact free standard target trials from
electrode Pz. For each trial we computed a Fast Fourier Transform by
symmetrically padding the 600 time point epochs with zeros to make
a 1024 point time series for each epoch, providing frequency bins with
a resolution of 0.488 Hz. Because the data are collected with an on-
line 30 Hz low-pass filter, we plot only frequencies up to 30-Hz. Each
participant’s 504 spectra are then averaged together to compute partic-
ipant spectra, which were then combined to form grand average spec-
tra plotted in Fig. 3A. Evident from the plot are similar spectra for the
Raspberry Pi 2 and PC measurements. Both conditions showed the ex-
pected 1/f frequency structure in the data, as well as the typical peak
in the alpha frequency range between 8 and 12 Hz (Mathewson et al.,
2011).

To compute a second and related estimate of the noise on single
trial EEG epochs, we randomly selected 360 standard tone epochs
for each participant, and computed the root mean square (RMS) of
the baseline period on each trial. We used the 200-ms baseline pe-
riod (100 time points) prior to trigger onset to avoid the influence of
any evoked ERP activity on the RMS measurement. The RMS is a
measure of the average absolute difference of the voltage around the

baseline, and is therefore a good estimate of single trial noise in the
EEG data. For each trial, we averaged the RMS values for each EEG
electrode, then averaged over trials for each participant, then com-
puted the grand average RMS across participants (as in Laszlo et al.,
2014).

To estimate the distribution of RMS in our data for each condi-
tion, we employed a permutation test in which a different 360 epochs
were selected without replacement for each participant on each of
10,000 permutations (Laszlo et al., 2014). For each of these ran-
dom selections, and for each electrode condition, we computed and
recorded the grand average single trial RMS. Fig. 3B shows a his-
togram of the grand average single trial RMS values computed for
each permutation, along with a bar graph of the mean and standard
deviation. The results suggest a separation between the Raspberry
Pi 2 (MRMS = 6.703; SDRMS EEG = 1.938) and PC (MRMS = 6.508;
SDRMSEEG = 1.709; Wilcoxon rank sum test; z = -122.472;
p < 0.0001) RMS distributions.

To quantify the level of noise in the participant average ERPs, we
again employed a permutation test of the RMS values in the baseline
period. In this ERP version, for each of the 10,000 permutations, we
averaged the 360 standard trials that were randomly selected without
replacement from the larger pool of that participant’s artifact free tri-
als in each condition. We then computed the RMS of the resultant
100 time points of ERP baseline. We averaged these RMS values over
EEG electrodes, and then computed a grand average across partici-
pants. Fig. 3C shows a histogram of the grand average RMS values
computed in each of the 10,000 permutations in each condition, along
with a bar graph of the mean and standard deviation. The Raspberry Pi
2 (MRMS-ERP = 0.390; SDRMS-ERP = 0.108) and PC (MRMS-ERP = 0.360;
SDRMS-ERP = 0.127) show similar RMS values (Wilcoxon rank sum
test; z = −66.6773; p < 0.001).

3.3. ERP analysis

Next we examined noise levels in the trial-averaged ERPs. Fig.
4A shows the grand average ERPs from electrode Pz and Fz follow-
ing standard and target tones. A clear MMN response, a negative de-
flection occurring between 175 and 275 ms after onset of target tones

Fig. 2. Trigger-tone latency and tone magnitude for Raspberry Pi 2 and PC. (A) Histogram shows latency between trigger offset and tone onset (ms) across 750 trials for both the
Raspberry Pi 2 and PC. Latency was increased but less variable for the PC compared to the Raspberry Pi 2. (B) Plots of high and low tones produced by the Raspberry Pi 2 and PC.
Small vertical line represents the average onset of the trigger while the shaded region represents the possible range of tone onset. Again it is clear latency variability is greater for the
Raspberry Pi 2. It is also apparent that the volume of the tones produced by the Raspberry Pi 2 (indicated by the voltage magnitude) is less than the PC. We corrected for both the
average latency shift and this volume difference, but not the latency variability.
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Fig. 3. Analysis of spectra and noise across trials. (A) Spectra plot of power across
a 1–30 Hz frequency range. The shaded regions represent standard error of the mean
across participants. (B) Histogram of baseline root mean square (RMS) values across
10 000 resampled trials. Bar graph shows mean RMS for the Raspberry Pi 2 and PC,
representing the amount of noise present prior to the start of a trial. (C) Histogram of
ERP RMS values across 10 000 resampled trials. Bar graph shows mean ERP RMS for
the Raspberry Pi 2 and PC. These values indicate the amount of noise present in the av-
eraged ERP signal baseline. Error bars indicate the standard deviation.

that is similar for both conditions, and P3 oddball difference, with
more positive voltage between 300 and 430 ms following rare target
tones compared to frequent standard tones, can be observed. We used
these time windows for all further ERP analyses of the P3 and MMN.
Fig. 4B shows the ERPs for standard and target tones overlaid for both
the Raspberry Pi 2 and the PC, at electrode locations Pz and Fz.

Fig. 5A shows the difference waves for the MMN and P3, com-
puted by subtracting the ERPs for standard tones from target tones
at electrodes Fz and Pz, respectively. For the MMN a negative peak
is observed around 270 ms while for the P3 a clear positive peak
around 400 ms can be seen. Inset are topographies showing the ERP
effects in the indicated time windows, with similar distributions. At
electrode Fz, a significant MMN response for the Raspberry Pi 2
(MdiffPi = −2.845 μV; SDdiffPi = 1.868 μV; t(9) = −4.816; p < 0.001)
and PC (MdiffPi = −3.083 μV; SDdiffPi = 1.498 μV; t(9) = −6.506;
p < 0.001) can be observed. A significant P3 effect at electrode Pz is
seen for the Raspberry Pi 2 (MdiffPi = 6.471 μV; SDdiffPi = 6.332 μV;
t(9) = 3.232; p = 0.0051) and PC (MdiffPC = 6.081 μV;
SDdiffPC = 5.476 μV; t(9) = 3.5118; p = 0.00097).

The MMN (MPC-Pi = −0.5708 μV; SDPC-Pi = 1.2130 μV;
t(9) = -1.4879; p = 0.1709) and P3 windows (MPC-Pi = 0.2267 μV;
SDPC-Pi = 1.6945 μV; t(9) = 0.4231; p = 0.6822) show no significant
difference in ERP amplitude between the Raspberry Pi 2 and PC. Fig.
5B shows bar graphs representing the mean and within subject stan-
dard error of the MMN and P3 response across participants for the
Raspberry Pi 2 and PC.

To test how the trigger-tone latency differences may influence
earlier ERPs more susceptible to temporal jitter we examined the
N1 response which, based on visual inspection of the grand average
ERP waveforms at electrode Fz, was determined to be 130–160 ms
following tone onset. The Raspberry Pi 2(MPi = −1.5943 μV;
SDPi = 1.0420 μV; t(9) = −4.8384; p < 0.0005) and PC
(MPC = −2.1650 μV; SDPC = 0.8911 μV; t(9) = −7.6829; p < 0.0001)

Fig. 4. Event related potentials (ERP) obtained from the Raspberry Pi 2 and PC across electrodes Fz and Pz. (A) Four leftmost plots show the average ERPs measured following
presentation of a high or low tone at electrode Fz and Pz. (B) Four rightmost plots offer a comparison between the Raspberry Pi 2 and PC, showing the average ERPs following the
high tone. The ERPs derived from both systems appear spatially and temporally similar, but for a bit of attenuation in the later large components in the Raspberry Pi 2, error bars
indicate the within subject standard error of the mean.
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Fig. 5. Difference in ERPs evoked from Raspberry Pi 2 and PC. (A) Difference wave plots (low tone ERP − high tone ERP) at electrodes Fz and Pz for both the Raspberry Pi 2 and
PC. Topographical plots show MMN and P3 responses for the Raspberry Pi 2 and PC. Plots were derived using the appropriate time windows indicated by the shaded yellow regions.
Error bars represent the within-participant standard error since within participant variation has been removed due to the subtraction (Loftus and Masson, 1994). (B) Bar graphs indi-
cate the average MMN and P3 response across participants for the Raspberry Pi 2 and PC, error bars indicate the within subject standard error of the mean. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

show significant N1 responses. While the Raspberry Pi 2 showed a re-
duced N1 compared to the PC, this difference was on the edge of sig-
nificance (t(9) = −2.3295; p = 0.0448).

3.4. ERP power

To compare the ERP statistical power as a function of the number
of trials used for both the P3 and MMN, we used another permutation
procedure in which we varied the number of trials contributing to the
ERP average while keeping the 4 to 1 ratio of standard to target trials
(Mathewson et al., in press). Trial numbers were varied from 4 stan-
dards and 1 target trial, by 20 standard trials, up to 540 standard and
135 target trials, separately for each of the two stimulus presentation
conditions. For each number of trials, 10,000 permutations were ran-
domly selected from the total pool without replacement.

For each permutation, the selected single trials were averaged to
create participant ERPs separately for target and standard tones. The
difference between target and standard tones was then computed at
electrode Fz between 175 and 275 ms (MMN) and electrode Pz be-
tween 300 and 430 ms (P3), and these simulated participant average
ERP differences were compared to a null distribution with a standard
t-test (df = 9, one-tailed, α = 0.05). Fig. 6 plots the proportion of the
10,000 permutations in which the t-statistic passed the significance
threshold, as a function of the number of samples in each permutation.
The P3 and MMN data from the Raspberry Pi 2 and PC reached sig-
nificance on 80% of permutations (80% power dashed line) with simi-
lar numbers of trials. On average fewer trials are needed to reach 80%
power for the PC (MMN trials = 32, P3 trials = 24) condition com-
pared to the Raspberry Pi 2 (MMN trials = 56, P3 trials = 32).

4. Discussion

We directly compared a Raspberry Pi 2 computer to a traditional
desktop PC to assess if the Raspberry Pi 2 can act as a viable, low-cost
alternative in presenting stimuli for EEG experiments and producing
reliable ERP measurements. This comparison was done using an au-
ditory oddball task which has been shown to reliably produce ERPs
such as the MMN and P3 in response to rare target tones. Despite dif-
ferences in trigger-tone timing quality EEG data and significant ERP
responses were obtained on the Raspberry Pi 2 and are comparable to
the desktop PC.

Trigger to tone onset timings were on average 11.15 ms shorter for
the Raspberry Pi 2 compared to the PC; however, the Raspberry Pi
2 also showed more variability in these timings. This variation seems
unusual considering the PC we used had significantly higher process-
ing power compared to the Raspberry Pi 2 but hardware and operat-
ing system (OS) differences likely account for the increased variabil-
ity in trigger to tone latencies observed. The Raspberry Pi 2 is run-
ning the Raspbian OS, a modified version of Debian which is based
on the Linux OS, specifically designed for Raspberry Pi devices. The
PC is running Windows 7 and is designed to run on a variety of
devices rather than on a specific hardware configuration. The spe-
cialised OS for the Raspberry Pi 2 may help to lower the average trig-
ger to tone latency compared to the PC, but the increased variabil-
ity is likely due to the very different hardware of both systems. On
the PC tone generation was done using PsychPortAudio from Psych-
ToolBox and, according to the website (InitializePsychAudio, 2012),
there are latency issues associated with Windows that are not pre-
sent in Linux based systems. In terms of hardware, the Raspberry Pi
2 has a slower processor (900 MHz quad-core) compared to the PC
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Fig. 6. Statistical power for the Raspberry Pi 2 and PC in obtaining significant ERP re-
sponses. Number of resamplings with significant MMN and P3 responses on both the
Raspberry Pi 2 and PC as a function of the number of trials. The same 4:1 ratio for
tone presentation was kept during resampling. The dashed line signifies 80% statistical
power. Slightly fewer trials were needed to obtain 80% statistical significance for the
Raspberry Pi 2 compared with the PC.

(3.6 GHz octa-core) while also having less RAM available (1GB com-
pared to 16GB). However, the Raspberry Pi 2 also has fewer processes
running simultaneously so while there is less demand on the Rasp-
berry Pi 2, any demand may have a greater performance impact com-
pared to the PC. The PC is also using a dedicated sound card to gen-
erate the tones which may help decrease variability but also slightly
increase the time it takes to generate a tone since the sound card is
another device the PC must interface with. Differences between the
Matlab and Python programming languages will also contribute to the
observed differences. More powerful hardware (as in the newly re-
leased Raspberry Pi 3) and further decreasing demands on the proces-
sor (such as programming the experiment directly in Python for both
systems) will help to minimise any differences observed.

To understand how these latency differences may interfere with the
amplitude and measurement of earlier ERPs which may be more sus-
ceptible to more variable latencies, we showed that both the Raspberry
Pi 2 and PC can present stimuli that elicit a reliable and significant N1
response. While the amplitude of the N1 was lower for the Raspberry
Pi 2 compared to the PC, this difference was not significant. This de-
creased amplitude is likely influenced by the more variable latencies
of the Raspberry Pi 2 since the peak of the N1 response is shorter com-
pared to the MMN and P3 and thus more susceptible to temporal jitter.
Smaller, shorter ERPs could essentially be ‘averaged out’ due to this
jitter, making the Raspberry Pi 2 less suitable for such tasks. Minimis-
ing latency variability would be essential for such tasks and the mea-
sures mentioned previously should help minimise this variability and
make the Raspberry Pi 2 suitable for a wider range of ERP related re-
search.

We also observed increased noise during both the baseline and
ERP measurements for the Raspberry Pi 2. While the noise difference
was not significant for the ERP RMS, background noise was signifi-
cantly different with higher baseline noise for the Raspberry Pi 2 than
the PC. This increase in noise may be due to sound quality and vol-
ume differences between both computer systems; the Raspberry Pi 2
requires less power to run and likely cannot provide as much power
to the speakers as compared to the PC when producing the auditory
tones. In order to match tone volume for both systems, and to make
the Raspberry Pi 2 as similar to the PC as possible, the volume on
the speakers was directly increased during the Raspberry Pi 2 until the
tone volume matched that of the PC. This volume increase also ampli-
fied any static noise which could be heard when a tone was not play-
ing, and may account for the increased noise in the Raspberry Pi 2.
The PC used a dedicated sound card to produce the tones, compared
to the Raspberry Pi 2 which relied solely on the CPU for sound play-
back. Using dedicated hardware to produce the tones likely resulted
in cleaner, louder sounds for the PC. Further, increased variance be-
tween trigger onset and tone onset for the Raspberry Pi 2 would result
in more variable baseline measurements across each trial compared to
the PC baseline, which would be more consistent.

If these noise and timing differences for the Raspberry Pi 2 had
been more significant, the ERPs measured would have been tempo-
rally and spatially different from those obtained by the PC. Large, un-
reliable temporal variability may prevent significant MMN or P3 re-
sponses from being measured, which would suggest that the Rasp-
berry Pi 2 could not reliably be used for stimulus presentation in EEG
experiments and could not act as a viable replacement for a desktop
PC in certain situations. Despite this temporal smearing, ERPs were
not significantly different; stimulus presentation using the Raspberry
Pi 2 produced spatially and temporally similar MMN and P3 ERPs,
along with similar scalp topographies. Our test of statistical power
(Kappenman and Luck, 2010; Laszlo et al., 2014; Mathewson et al.,
in press) show that similar numbers of trials are needed to reach a sta-
tistical power of 0.80, with the Raspberry Pi 2 requiring slightly more
trials and is likely due to the latency and auditory differences men-
tioned previously. No external modifications were made to adjust for
the increased variability of the Raspberry Pi 2 as our goal was to mea-
sure the impact of this less precise presentation on ERP recording and
analysis, and to show that reliable P3 and MMN responses could be
measured despite these differences. The use of our custom hardware,
similar to the work by Badcock et al. (2015) and de Lissa et al. (2015)
where the tone itself initiates the TTL pulse, would likely alleviate
these latency issues but would defeat the goal of the current experi-
ment, which is to strictly compare the Raspberry Pi 2 to a PC without
adding extra components.

Other portable electronics may also fulfill the role of making ex-
periments more mobile but the Raspberry Pi 2 offers several distinct
advantages. Smart phones and tablets are very portable and can pre-
sent tones for the oddball paradigm while a laptop offers the same ba-
sic functionality of a desktop PC, but they are much more expensive
and lack the customisability a Raspberry Pi 2 offers. The Raspberry
Pi 2 offers several full size USB ports to connect external peripher-
als, such as keyboards and mice, and multiple ways to connect ex-
ternal displays and auditory equipment, but the programmable GPIO
pins allow for a level of customisability currently not offered by the
other devices. For our experiment these pins were used to directly
send TTL pulses to an external EEG amplifier but they can be used
for many other projects such as lighting LEDs, receiving temperature,
heart rate, and galvanic skin response measurements, and they can
also be used to control small electronic motors. Packages are avail-
able in Python to easily and directly program these pins. The Arduino
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microcontroller offers similarly customisable GPIO pins, with ex-
ternal attachments offering greater possibilities, but these pins must
be programmed from an external device. Experiments can be pro-
grammed and run entirely from the Raspberry Pi 2, offering a high de-
gree of customisability not matched by many other portable electron-
ics.

Demonstrating its portability and reliability, the Raspberry Pi 2 has
been used to derive ERPs while participants rode a bicycle outside.
Scanlon et al. (in preparation) performed a similar auditory oddball
task with the Raspberry Pi 2 while participants peddled a bicycle out-
side, with all necessary equipment placed inside a backpack worn by
the participant. Significant MMN and P3 responses were obtained and
comparable to those derived from a laboratory setting, demonstrating
that the Raspberry Pi 2 computer can reliably administer EEG exper-
iments in a variety of settings and mobile applications. The increased
use of portable and inexpensive EEG equipment in the field, combined
with stimulus presentation solutions such as those presented here, will
increase the cost of entry to ERP research.

The present study demonstrates that a Raspberry Pi 2 computer can
present stimuli used in an auditory oddball paradigm, producing com-
parable ERPs to an experiment administered by a traditional desktop
PC. While differences are apparent between both computer systems,
results from the Raspberry Pi 2 remain comparable to a PC, and fur-
ther changes to the experiment and equipment will likely minimise
these differences. The Raspberry Pi 2 can serve as a dependable and
low cost alternative to a traditional desktop PC in presenting stim-
uli for EEG experiments, allowing for more mobile EEG experiments
with results that are applicable to a wider variety of settings and con-
ditions.

Uncited reference

Acknowledgements

This work was supported by a discovery grant to KEM from the
Natural Sciences and Engineering Research Council (NSERC) of
Canada and start-up funds from the Faculty of Science. Thank you to
all members and volunteers of the Mathewson lab for assisting with
data collection and experimental setup.

References

Badcock, et al., 2015. Validation of the Emotiv EPOC EEG system for research quality
auditory event-related potentials in children. PeerJ. 3, e907. http://dx.doi.org/10.
7717/peerj.907.

Brain Products, 2014. Brain Products actiCAP—Selecting a Suitable EEG Recording
Cap: Tutorial. [Manual]. Munich, Germany. Retrieved April 7, 2016 from http://
www.brainproducts.com/downloads.php?kid=8.

Brainard, D.H., 1997. The psychophysics toolbox. Spat. Vis. 10, 433–436. http://dx.
doi.org/10.1163/156856897X00357.

Delorme, A., Makeig, S., 2004. EEGLAB: an open source toolbox for analysis of sin-
gle-trial EEG dynamics including independent component analysis. J. Neurosci.
Methods 134 (1), 9–21. http://dx.doi.org/10.1016/j.jneumeth.2003.10.009.

Gratton, G., Coles, M.G., Donchin, E., 1983. A new method for off-line removal of oc-
ular artifact. Electroencephalogr. Clin. Neurophysiol. 55 (4), 468–484. http://dx.
doi.org/10.1016/0013-4694(83)90135-9.

InitializePsychAudio. (December 18, 2012). Retrieved from http://docs.psychtoolbox.
org/InitializePsychSound

Joardar, S., Chatterjee, A., Rakshit, A., 2015. A real-time palm dorsa subcutaneous
vein pattern recognition system using collaborative representation-based classifica-
tion. IEEE Trans. Instrum. Meas. 64 (4), 959–966. http://dx.doi.org/10.1109/tim.
2014.2374713.

John, N., Surya, R., Ashwini, R., Kumar, S., Soman, K., 2015. A low cost implementa-
tion of multi-label classification algorithm using mathematica on raspberry pi. Pro-
cedia Comput. Sci. 46, 306–313. http://dx.doi.org/10.1016/j.procs.2015.02.025.

Kappenman, E.S., Luck, S.J., 2010. The effects of electrode impedance on data quality
and statistical significance in ERP recordings. Psychophysiology 47 (5), 888–904.
http://dx.doi.org/10.1111/j.1469-8986.2010.01009.x.

Laszlo, S., Ruiz-Blondet, M., Khalifian, N., Chu, F., Jin, Z., 2014. A direct comparison
of active and passive amplification electrodes in the same amplifier system. J.
Neurosci. Methods 235, 298–307. http://dx.doi.org/10.1016/j.jneumeth.2014.05.
012.

Loftus, G.R., Masson, M.E., 1994. Using confidence intervals in within-subject de-
signs. Psychon. Bull. Rev. 1 (4), 476–490. http://dx.doi.org/10.3758/BF03210951.

Luck, S.J., 2014. An Introduction to the Event-related Potential Technique. MIT press.
Mathôt, S., Schreij, D., Theeuwes, J., 2012. OpenSesame: an open-source, graphical

experiment builder for the social sciences. Behav. Res. Methods 44 (2), 314–324.
http://dx.doi.org/10.3758/s13428-011-0168-7.

Mathewson, K.E., Lleras, A., Beck, D.M., Fabiani, M., Ro, T., Gratton, G., 2011.
Pulsed out of awareness: EEG alpha oscillations represent a pulsed-inhibition of
ongoing cortical processing. Front. Psychol. 2, http://dx.doi.org/10.3389/fpsyg.
2011.00099.

Mathewson, K.E., Harrison, T.J.L., Kizuk, S.A.D., 2016. High and dry? Comparing ac-
tive dry EEG electrodes to active and passive wet electrodes. Psychophysiol-
ogy (in press).

Robson, J., Barker, D., 2015. Comparison of the protein-coding gene content of
Chlamydia trachomatis and Protochlamydia amoebophila using a Raspberry Pi
computer. BMC Res. Notes 8 (1)http://dx.doi.org/10.1186/s13104-015-1476-2.

Scanlon, J.E.M., Townsend, K.A., Cormier, D.L., Kuziek, J.W.P, Mathewson, K.E. (in
preparation) Taking off the training wheels: Measuring auditory P300 during out-
door cycling

Tivnan, M., Gurjar, R., Wolf, D., Vishwanath, K., 2015. High frequency sampling of
TTL pulses on a raspberry pi for diffuse correlation spectroscopy applications.
Sensors 15 (8), 19709–19722. http://dx.doi.org/10.3390/s150819709.

Van Hoey, G., Vanrumste, B., D’Havé, M., Van de Walle, R., Lemahieu, I., Boon, P.,
2000. Influence of measurement noise and electrode mislocalisation on EEG di-
pole-source localisation. Med. Biol. Eng. Comput. 38 (3), 287–296. http://dx.doi.
org/10.1007/bf02347049.

de Lissa, P., Sorensen, S., Badcock, N., Thie, J., McArthur, G., 2015. Measuring the
face-sensitive N170 with a gaming EEG system: a validation study. J. Neurosci.
Methods 253, 47–54. http://dx.doi.org/10.1016/j.jneumeth.2015.05.025.


